
Scaling up the Bidirectional Maintenance Lifecycle

Gustavo Villavicencio

December 16, 2015

Abstract

The bidirectional maintenance lifecycle is based on two referential
contexts (execution and maintenance), each characterized by a set of
proper software attributes, and connected by a bidirectional refactoring
mechanism. Such mechanism transforms the implementation version
with the corresponding set of software attributes in the execution con-
text to the version with the corresponding set of software attributes in
the maintenance context, and in reverse. This paper proposes the inte-
gration of the design level in this model. The result of such integration
should be a full-automatic environment for reengineering and mainte-
nance with the capacity for solving maintenance requests at a specific
abstraction level while keeping the structure and quality synchroniza-
tions with the other levels. In turn, such synchronizations should be
adjusted to each referential context, i.e. execution and maintenance.

1 Introduction

The bidirectional maintenance lifecycle (BML) proposed in [27] is based on
the idea that only one source code version is not enough for supporting two
very different activities like execution and maintenance. Such differences
are exposed by the software attributes ‘demanded’ by these contexts, that
is, the execution context requires performance, security, energy efficiency,
etc.; while the maintenance context requires comprehension, maintainability,
extensibility, reusability, etc. In turn, the set of critical properties associated
to a context is irrelevant for the other, for instance, performance and security
are irrelevant when the system is in maintenance.

Connecting both referential contexts there are bidirectional refactoring
sequences that transform the source code from the execution referential con-
text (ERC) to the maintenance referential context (MRC), and in reverse.
Search Based Software Engineering (SBSE) technique [8] is used to construct

1



such bidirectional refactoring sequences. The metaheuristic algorithms ap-
plied should be guided by a fitness function defined on the metrics associated
to the set of software attributes ‘relative’ to each referential context. In this
way, we maximize the software quality in both referential contexts avoid-
ing the trade-off analysis between antagonistic sets of software properties.
Basically, in order to solve a maintenance request, the maintainability con-
ditions are improved by improving the relative set of properties in the MRC.
To reach this target the system generates a sequence of intermediate (sub-
sidiary) artifact versions, each one representing an improvement step of the
metrics specified in the fitness function, and associated to the set of prop-
erties in the MRC. According to the maintenance request characteristics
and his cognitive style, the maintainer solves the maintenance request in the
most proper version. Then, the introduced modifications are automatically
propagated to the version in the ERC by forward refactoring sequences, and
so, the corresponding relative set of software properties is restored.

The forward refactoring sequence is obtained by reversing the reverse
refactoring sequence that generated the subsidiary version where the mod-
ifications were introduced. The modifications can affect the execution of
the forward refactoring sequence in different degrees: modifications do not
influence the execution of the forward refactoring sequence and the whole
sequence can be executed; only one part of the forward refactoring sequence
can be executed since modifications have broken it at some point; the com-
plete forward refactoring sequence can no longer be executed. Such degrees
are related to the level at which the current version is reused in the new ver-
sion. If the whole forward refactoring sequence can be executed, the whole
(or almost the whole) current version has been reused in the new version
generated after modifications. If only a subsequence of the forward refac-
toring sequence can be executed, then the current version has been partially
reused in the new version generated after modifications. Finally, if the com-
plete forward refactoring sequence can not longer be executed, nothing (or
almost nothing) from the current version has been reused in the new ver-
sion. If the latter case occurs, the reverse refactoring sequence should be
discarded and the metaheuristic algorithm should calculate a new forward
refactoring sequence from scratch. To do that, the system should ‘reverse’
(reset) the fitness function on the basis of the essential context attributes
in the ERC. In this case, we say that the system diverges to an alternative
solution.

We summarize the rationale and foundation for this model as follows:

• The increasing software complexity is being supported by only one ar-

2



tifact version which is used for both so dissimilar activities as execution
and maintenance. To decompress the pressure on one artifact version
only, we suggest to use alternative artifact versions grouped in two ref-
erential contexts, execution and maintenance, each characterized by a
set of proper software properties.

• Regardless of the advancements in new techniques, tools, etc., for soft-
ware maintenance, the maintenance costs continue growing. May be
it is time software maintenance leaves the relaxed position adopted
from the beginning, i.e. to execute their activities on exactly the same
artifact version that is being executed. Here we are adopting a more
proactive position by using subsidiary versions where the essential at-
tributes for maintenance are maximized.

• The growing automation incorporated in the software refactoring pro-
cess through the SBSE technique is a trend that will continue in the
future. We are visioning that such trend will bring the necessary
knowledge for constructing efficient refactoring sequences.

• The automatic propagation of changes between versions generated by
refactoring is another element that gives meaning to this model. The
modifications introduced during the maintenance phase into the sub-
sidiary software versions can be propagated automatically to the ver-
sion in execution [26]. In fact, the propagation of modifications from
one representation to another has raised a new research area, i.e. bidi-
rectional transformations (Bx) [5].

We consider that these facts provide well-founded evidence regarding the
necessity and feasibility for the BML model. However, for the BML to be
much more complete, the design level can be combined with the implementa-
tion level 1. As a consequence, the extended version of the BML will combine
two essential dimensions of a software artifact: structure and quality. The
(vertical) structure axis is represented by the design and implementation
levels, while the (horizontal) quality axis is represented by the sets of rel-
ative software properties in both referential contexts. The improved BML
model we are visioning is depicted in figure 1. We consider that the design
level incorporation is also well-founded since:

• SBSE technique can also operate on design representations [21, 13].

1An architecture level can also be integrated in this model but its treatment here will
not enrich much more this paper.

3



ExecutionLow

HighPerformance
Energy efficiency

Security

Maintainability
Extensibility
Reusability

Comprehension

MaintenanceLow

High Maintainability
Extensibility
Reusability

Comprehension

Performance
Energy efficiency

Security

Multi-level reverse refactoring

Multi-level forward refactoring

Design Design

Implementation Implementation

Figure 1: Integration of the design level into the bidirectional maintenance
lifecycle from [27].

• Modifications can also be propagated between representations at this
level.

• The synchronization between design and implementation representa-
tions is feasible and it is an active research area. Moreover, it is related
to the Bx area.

As a result of such integration we draw a full-automatic environment for
software reengineering and maintenance which, among others, should have
the following benefits:

• It maximizes the design and implementation quality in both referential
contexts (ERC and MRC) while keeping the quality and structure
synchronizations in each of them.

• It should supply multi-perspective views from both levels, implemen-
tation and design, and at the same time shows how they should be
related. Certainly this capacity should be valuable for the software
maintenance team since it can be composed by programmers and de-
signers who adhere to multiple cognitive styles.

• In the MRC the conditions are full improved since not only is the cur-
rent representation of interest (design or implementation) improved
by improving the corresponding attributes, but also the structure syn-
chronization provides the traceability between different abstraction lev-
els, which is essential for comprehension.

4



• It supplies a referential framework for organizing and classifying refac-
toring techniques. A refactoring (or refactoring sequence) is usually
proposed for improving a software attribute but without considering
the effects on the other attributes.

• The model makes one of the most complex task in the SBSE technique,
that is, the fitness function formulation is easier since the set of metrics
should be reduced according to the direction of refactoring.

The environment should be able to support a maintenance request at
the design level and also keep the synchronization with the implementation
level after modifications. Orthogonally, the environment should adjust the
quality of each abstraction level in both referential contexts. Thus, the
new BML model is based on two synchronization mechanisms operating in
orthogonal ways: quality and structure synchronizations. The rest of the
paper is organized as follows: In section 2 we describe the synchronization
mechanims and how they should be integrated. In section 3 we discuss some
issues raised from the strategy in the previous section, and finally section 4
shows the conclusions.

2 Scaling up the BML

According to Figure 1 quality and structural synchronizations are reached
in both referential contexts, i.e., MRC and ERC. The following subsections
describe how these processes should be.

2.1 Quality Synchronization

The separation between abstraction levels means that two different supports
are used for both levels. Thus, in the OO paradigm, for instance, we would
use UML diagrams for representing design while at the implementation level
we would use C++ or Java languages. The support difference becomes
evident in aspects like precision, completeness, abstraction, etc. It could be
obvious, but such distinction is an essential issue since it states the metrics
to be applied. In this way, from this perspective, we have three different
metric categories:

• Metrics applied at the design level.

• Metrics applied at the implementation level.

5



• Metrics applied at both levels.

For instance, the DIT metric can be extracted and applied at both lev-
els. The component balance metric, however, can only be applied at the
implementation level but not at the design level. Such distinction is impor-
tant for the quality synchronization process since we require a correlation
or consistency relationship between attributes at both levels. That is, every
quality variation on an abstraction level should be associated to a correlated
or consistent quality variation on the other abstraction level. Note that we
are not arguing that both variations are the same but they are related in a
way that must be analyzed. In this regard, [11] states

It is further possible that there may be relationships in attributes
across the different classes of metrics. For instance, the at-
tributes number of lines which falls within the code group may
be related to the branch count and condition count attributes in
the design metric group.

Thus, an attribute correlation analysis should set up a consistency rela-
tionship that should be the main element in the process of measuring the
quality variations at both levels. At first sight, only the metrics in the third
category should be applied in the consistency relation formulation, but a
thorough correlation analysis should detect how the other metric categories
correlate. In section 3 we will introduce more details on the quality correla-
tion relationship. In section 2.3, we will use the symbol (∼) to indicate that
a specific design is qualitatively consistent with a specific implementation
and in reverse.

On the other hand, SBSE technique has been applied successfully at
both abstraction levels, design [21, 6] and implementation [17], to adjust the
required quality. However, as we will point out in the following section, a
consistency relationship between transformations at both abstraction levels
is needed. That means that while the SBSE technique is applied on an
abstraction level for constructing the refactoring sequence that adjust the
quality, the refactoring sequence to be applied to the other abstraction level,
is constructed from the previous one. In another way the synchronization
will not be completed.

2.2 Structural Synchronization

Unlike quality synchronization, structure synchronization has received much
more attention. One of the software engineering premise, though not always

6



fulfilled, has been to keep the consistency (synchronization) between the
abstraction levels, i.e. design and implementation. This problem is usu-
ally called the architectural conformance [4]. The aim of an architectural
conformance process is to detect the violations present in the source code
that do not respect the constraints imposed by the intended architecture.
Regarding this problem [24] states:

However, the effects embedded in the code cannot be automati-
cally detected, because there is no language-level traceability be-
tween architectural design and its implementation. This trace-
ability should be bidirectional, that is, a change in the code should
be reflected in the corresponding design model. Unfortunately,
current MDD tools are insufficient to realize this kind of bidirec-
tional traceability.

Thus, the problem is not always unidirectional throughout the software de-
velopment (from design level to code level), but also bidirectional during the
maintenance lifecycle (usually from code level to design level). Although,
the latter is of our particular interest, we will see that the relationship from
the design to the code is also essential in our context.

Much research effort has been devoted to keeping the consistency be-
tween the abstraction levels of a software artifact. Regarding the solutions,
they have been focused from different perspectives: from the Architecture
Description Languages (ADL) [1, 20, 24], reflexion models [18], domain-
specific languages (DSL) [9], intensional views [15], design tests [3]. Fur-
thermore, in the last years, a step forward has been taken in formalizing the
synchronization between a design model and its implementation [14]. In this
approach the object models are expressed in Alloy and the implementation
in Java. In Figure 2 2, Alloy laws (¶ and ¸) are applied on the object
model and each of them has associated a synchronizer (· and ¹ respec-
tively) which is applied to the implementation. The synchronizers, which
are really program refinements, are composed and applied sequentially in
order to obtain a synchronized implementation. Although in this work the
synchronizers are unidirectional (from model to implementation) they can
also be defined as bidirectional.

We should note that the association between the Alloy laws and syn-
chronizers is an essential element in the synchronization process. [16] calls

2Note that a single transformation at the design level can entail a composition of many
single transformations at the implementation level.

7



¶ ¸

dr0 dr1 dr2 dr3 . . .

· ¹
Design

Implementation

cr00 cr01 cr02 cr03 cr10 cr11 cr12 . . .

Figure 2: M apping the design refactorings (dr) to code refactoring (cr) using
synchronizers.

reification a similar relationship between design-level refactorings and code-
level refactorings. Thus, just as in the quality dimension, in the structure
dimension we also have a correlation relationship between transformations
at different abstraction levels. In section 2.3 we overload the (∼) symbol to
represent that a design level transformation is consistent with a code level
transformation.

2.3 Integrating both Synchronization Mechanisms

In the two previous subsections we have presented the main mechanisms
operating in horizontal (quality) and vertical (structure) ways. In both
dimensions, the essential element is the correlation relationship, between
metrics in the quality dimension, and between transformations in the struc-
ture dimension. We sustain that the integration of these elements will lead
us to the construction of a more sophisticated synchronization mechanism
useful for maintenance and reengineering.

At this point, and once notions of quality and structure synchroniza-
tions have been described, we can present the hypothesis that guides this
work. After that, we will describe how such mechanisms should work when
integrated. Let D and C be the design and implementation representations
respectively, which are structural and qualitatively synchronized. Let also
td and ti be transformations to be applied at the design and implementation
levels respectively and correlated between them (in terms of [14] td is an
Alloy law and ti its associated synchronizer). Finally, let a (polymorphic)
function Q that measures the quality levels of both representations, D and
C. Remember that the metrics at both abstraction levels also correlate.
Our hypothesis states that, if td is applied on D to generate a new design
representation D′, and ti is applied on C to generate a new implementation

8



representation C ′, then the quality measured by Q on D′ correlates with the
quality measures by Q on C ′. More formally, and overloading the correlation
relationship (∼) on quality and structure

td ∼ ti ∧Q(D) ∼ Q(C)⇒ Q(td(D)) ∼ Q(ti(C))

This hypothesis should have important consequences in the extended BML
model due to its bidirectional nature. In the sequel we describe how the
functioning of the maintenance and reengineering environment constructed
on the BML model, and operating under the verification of the previous hy-
pothesis should be. For this purpose, to the definitions already introduced,
we added the following:

• D0 and C0 are the design and implementation versions in the ERC.

• td is decomposed in
←−
dr and

−→
dr, the reverse and forward design-level

refactoring sequences respectively, while ti is decomposed in ←−cr and
−→cr, the reverse and forward implementation-level refactoring sequences
respectively.

Assuming that D0 and C0 are structurally and qualitatively synchronized
in ERC, in the MRC the synchronization can be exposed at both levels as
follows:

• Starting from D0 in ERC, we say that if Di =
−→
dr(D0) synchronizes

with Ch = −→cr(C0) then Q(Ch) ∼ Q(Di).

• Starting from C0 in ERC, we say that if Ch = −→cr(C0) synchronizes
with Di =

−→
dr(D0) then Q(Di) ∼ Q(Ch).

In the first case, the reverse refactoring sequence
−→
dr is obtained by SBSE

technique while the related reverse refactoring sequence −→cr applied on the
implementation level is obtained from the previous one through the correla-
tion relationship. On the contrary, in the second case the reverse refactoring
sequence −→cr is generated by SBSE technique, and

−→
dr by the correlation re-

lationship. In the same way, according to what abstraction level the main-
tenance request was solved, the synchronization in the ERC can be exposed
at both levels:

• Once the maintenance request has been solved on Di, if D0 =
←−
dr(Di)

synchronizes with C0 = ←−cr(Ch) then Q(C0) ∼ Q(D0). In this case ←−cr
should be generated by the correlation relationship.

9



• Once the maintenance request has been solved on Ci, if C0 = ←−cr(Ch)
synchronizes with D0 =

←−
dr(Di) then Q(D0) ∼ Q(C0). In this case

←−
dr

should be generated by the correlation relationship.

The last two definitions hold whenever
←−
dr and ←−cr are obtained by (totally

or partially) reversing
−→
dr and −→cr respectively. Clearly, there is an abuse

in the previous notation since the variation of length of
←−
dr and ←−cr is not

represented. Such variation depends on which position the reverse sequence
has been affected by the introduced modifications to solve the maintenance
request. Furthermore, when the inversion fails, a new forward refactoring

sequence should be calculated using SBSE technique:
←−
dr′ or

←−
cr′. In such

cases, we say the system diverges to a new solution: D′
0 or C ′

0 with new
quality values. That is,

• Once the maintenance request has been solved on Di, and the inversion

of
−→
dr fails, if the new solution D′

0 =
←−
dr′(Di) synchronizes with C ′

0 =
←−
cr′(Ch) then Q(C ′

0) ∼ Q(D′
0). In this case,

←−
dr′ should be calculated

by SBSE technique while
←−
cr′ should be generated by means of the

correlation relationship.

• Once the maintenance request has been solved on Ci, and the inversion

of −→cr fails, if the new solution C ′
0 =
←−
cr′(Ch) synchronizes with D′

0 =
←−
dr′(Di) then Q(D′

0) ∼ Q(C ′
0). In this case,

←−
cr′ should be calculated

by SBSE technique while
←−
dr′ should be generated by means of the

correlation relationship.

The introduction of modifications in order to solve a maintenance request
represents a key moment in the process since the quality synchronization is
at risk. It is a human-centered task. Once the modifications have been
introduced either into the design or the code base, the quality should be
checked to detect variations regarding the previous quality level. If the
quality engineer detects unacceptable variations, the modifications should be
adjusted until they reach the desired threshold. Just then the modifications
should be propagated to the version in the ERC. Note that the structural
synchronization in the MRC seems unnecessary after modifications, but it
could be useful for testing. On the contrary, structural synchronization is
essential previous modifications due to their usefulness for comprehension.

10



3 Discussion

One of the first issues raised in this approach is how to identify the most
proper version for implementing the solution that solves a maintenance re-
quest. How to identify the initial set of components affected by a mainte-
nance request has already be treated [2], but in this approach, such set of
components (and their relationships) can be viewed from different perspec-
tives. Thus, what perspective best fits the current maintenance request is
the problem to solve. But the solution to this problem is strongly related
to the programmer’s cognitive style. Here a visual tool should be needed
to quickly attract the programmer’s attention on the code version that best
fits his cognitive style. The integration of visualization capacities with refac-
toring tools has been suggested in [19]. [7] introduces the ‘semantic lens’
concept as a way to use the fitness function for tailoring the pretty printer to
the cognitive style of the programmer. Furthermore, different types of ‘cos-
metic’ modifications to the source code should be automatized in order to fit
the code presentation to a programmer with a specific cognitive style [22].
Since modifications can also be carried out by designers in the design level,
a similar rationale can be applied at this level. Therefore, an exhaustive
experimentation in this area is needed to identify the specific characteristics
of the visualizations required by the strategy. In this regard, [25] states

Although there are several visualization elements available, it is
not a simple task to choose a visualization that will meet all the
expectations and represent everything needed. Since the num-
ber of visualization alternatives keeps growing, it is important
to adopt some sort of mechanism for selecting the most suitable
ones, i.e., making an appropriate choice. In this sense, by select-
ing only the necessary features, visualizations can be composed
with less effort.

This work carries out a domain analysis on the visualization and interaction
area, and organizes the information collected in a visualization feature model.
Then, the model supports domain engineering activities for building new
visualizations according to awareness requirements.

On the other hand, according to where the modifications are applied to
solve a maintenance request, the relationship between design and code can
be represented by Figure 3. That is, a minor movement on the big gear on
the left has a great impact on the small gear on the right. And in reverse,
a big movement on the small gear on the right has a slight impact on the

11



Design Code

Figure 3: Visualizing the effects of changes in one abstraction level on the
other level.

big gear on the left. That is, the modifications have different impacts ac-
cording to the level they are applied to. If the modifications occur at the
design level, the implementation could perceive a great scale impact. On
the contrary, if the modifications occur at the code level they could not be
perceived at the design level. From this observation, we pinpoint that the
introduced modifications have two characteristics, i.e. scope and intensity.
The latter one is particularly interesting in the current context. By intensity,
we refer to the variations in the quality parameters as a consequence of the
executed modifications at a specific abstraction level. According to the in-
tuition described above, when these modifications are reflected by the other
abstraction level, the intensity can be amplified or diminished depending on
which level the modifications come from. For instance, if they are propa-
gated from the design, they will have a great impact on the implementation,
which should be reflected by important variations on the related metrics.
Therefore, the modifications introduced into a level (design or implementa-
tion) have a specific impact on the attributes measured for such level, but
the same measurement at the other level can deliver a different result, once
the modifications have been reflected on it. The intensity with which the
same modification is perceived by the abstraction levels, plays a central role
in the quality correlation relationship formulation. The quality correlation
relationship is the main mechanism used to synchronize the quality at both
abstraction levels. Therefore, the correlation analysis mentioned in section
2.1 should end with a well-defined correlation relationship definition.

Another issue worth mentioning is the automatic generation of names
throughout the transformation process. At either level, design and imple-
mentation, the search-based transformation entails the generation of inter-
mediate representations before getting the representation with the desired
quality level. Intermediate and final representations are constructed by el-
ements (like functional units) whose names are assigned automatically. As

12



we know, such names are important for comprehension during maintenance.
The automatic generation of meaningful names is an increasing issue in
search-based transformation since its use is becoming more and more com-
mon. To solve this problem [10] proposes the construction of a dictionary
based on the analysis of requirement documentation. In our context, this
problem is also closely related with the structure synchronization since the
assignment of names to related elements at both abstraction levels should
have a unified criterion.

4 Conclusions

In this paper we have described the integration of the design level into the
BML model, and we have shown that it is perfectly coherent and feasible.
Regarding feasibility, the extended BML brings new challenges up, many
of which have been identified, and also, the related bibliographic references
provided. These references show the (dissimilar) progress made in each area.
The fact that the challenges raised are being treated by the current software
engineering research, at least in an incipient way, it is a good indicator for
coherence and feasibility since the proposed model is a view on how future
knowledge on the related areas could be integrated.

Even though the sophistication and complexity behind the change of
perception on software maintenance and reengineering proposed here is im-
portant, they will be doubly rewarded, i.e. the most suitable version in both
referential contexts. Such appropriateness is not only required in mainte-
nance, as it was dealt with in section 1, but also during execution. In fact,
there is a specific software engineering research area dedicated to improving
the software properties for execution, i.e. software performance engineer-
ing [23]. What is more, other research areas ask for new properties during
execution, such as the green software area that requires efficiency energy
consumption [12] (Figure 1). Thus, the growing pressure put on only one
artifact version for two so dissimilar activities will not be supported at large.

It is interesting to note that green software and software performance
engineering areas, one as much as the other, use refactoring techniques for
improving properties for execution. Even more interesting, just as in the
software maintenance area, in both previous areas, refactorings are guided by
the properties of interest without considering the others. Thus, in software
maintenance, for instance, refactoring techniques are used for improving
maintainability but without considering the consequence on performance.
On the contrary, software performance engineering uses refactoring tech-

13



niques for improving performance without considering the effects on main-
tainability. As a consequence, there are software engineering research areas
applying the same technique but in opposite directions. From this perspec-
tive, the BML model supplies a general framework in which the usefulness
of the refactoring technique should be better understood.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connecting soft-
ware architecture to implementation. In Proceedings of the 24th Inter-
national Conference on Software Engineering, ICSE ’02, pages 187–197,
New York, NY, USA, 2002. ACM.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. D. Lucia. Identifying the
starting impact set of a maintenance request: A case study. In CSMR,
pages 227–230, 2000.

[3] J. Brunet, D. S. Guerrero, and J. C. A. de Figueiredo. Structural con-
formance checking with design tests: An evaluation of usability and
calability. In IEEE 27th International Conference on Software Main-
tenance, ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011,
pages 143–152, 2011.

[4] A. Caracciolo, M. F. Lungu, and O. Nierstrasz. A unified approach
to architecture conformance checking. In 12th Working IEEE/IFIP
Conference on Software Architecture, WICSA 2015, Montreal, QC,
Canada, May 4-8, 2015, pages 41–50, 2015.

[5] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and
J. F. Terwilliger. Bidirectional Transformations: A Cross-Discipline
Perspective—GRACE meeting notes, state of the art, and outlook. In
ICMT2009 - International Conference on Model Transformation, Pro-
ceedings, volume 5563 of LNCS. Springer, 2009.

[6] J. Denil, M. Jukss, C. Verbrugge, and H. Vangheluwe. Search-based
model optimization using model transformations. In System Analysis
and Modeling: Models and Reusability - 8th International Conference,
SAM 2014, Valencia, Spain, September 29-30, 2014. Proceedings, vol-
ume 8769 of Lecture Notes in Computer Science, pages 80–95. Springer,
2014.

14



[7] M. Harman. Search based software engineering for program compre-
hension. In Proceedings of the 15th IEEE International Conference
on Program Comprehension, ICPC ’07, pages 3–13, Washington, DC,
USA, 2007. IEEE Computer Society.

[8] M. Harman and B. F. Jones. Search-based software engineering. Infor-
mation and Software Technology, 43:833–839, 2001.

[9] D. Hou and H. J. Hoover. Using scl to specify and check design intent
in source code. IEEE Transactions Softw. Eng., 32(6):404–423, June
2006.

[10] A. C. Jensen and B. H. Cheng. On the use of genetic programming
for automated refactoring and the introduction of design patterns. In
Proceedings of the 12th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’10, pages 1341–1348, New York, NY, USA,
2010. ACM.

[11] Y. Jiang, B. Cukic, T. Menzies, and N. Bartlow. Comparing design and
code metrics for software quality prediction. In Proceedings of the 4th
International Workshop on Predictor Models in Software Engineering,
PROMISE ’08, pages 11–18, New York, NY, USA, 2008. ACM.

[12] T. Johann, M. Dick, S. Naumann, and E. Kern. How to measure energy-
efficiency of software: Metrics and measurement results. In Proceedings
of the First International Workshop on Green and Sustainable Software,
GREENS ’12, pages 51–54, Piscataway, NJ, USA, 2012. IEEE Press.

[13] U. Mansoor, M. Kessentini, P. Langer, and T. Mayerhofer. Multi-
view model refactoring using a multi-objective evolutionary algorithm.
Software Quality Journal.

[14] T. Massoni, R. Gheyi, and P. Borba. Synchronizing model and pro-
gram refactoring. In Proceedings of the 13th Brazilian Conference on
Formal Methods: Foundations and Applications, SBMF’10, pages 96–
111, Berlin, Heidelberg, 2011. Springer-Verlag.

[15] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts. Co-evolving code and
design with intensional views — a case study. Journal on Computer
Languages, Systems and Structures, 32(2–3):140–156, July-October
2006. Special Issue: Smalltalk.

15



[16] I. H. Moghadam and M. Ó. Cinnéide. Automated refactoring using
design differencing. In 16th European Conference on Software Mainte-
nance and Reengineering, CSMR 2012, Szeged, Hungary, March 27-30,
2012, pages 43–52, 2012.

[17] I. H. Moghadam and M. Ó Cinnéide. Code-imp: A tool for automated
search-based refactoring. In Proceedings of the 4th Workshop on Refac-
toring Tools, WRT ’11, pages 41–44, New York, NY, USA, 2011. ACM.

[18] G. C. Murphy, D. Notkin, and K. J. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In SIGSOFT
’95, Proceedings of the Third ACM SIGSOFT Symposium on Founda-
tions of Software Engineering, Washington, DC, USA, October 10-13,
1995, pages 18–28, 1995.

[19] E. R. Murphy-Hill. Improving usability of refactoring tools. In Compan-
ion to the 21th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2006),
pages 746–747, Portland, Orgegon, USA, October 2006. ACM.

[20] L. G. P. Murta, A. van der Hoek, and C. M. L. Werner. Arch-
trace: Policy-based support for managing evolving architecture-to-
implementation traceability links. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE 2006), 18-22
September 2006, Tokyo, Japan, pages 135–144, 2006.

[21] O. RäIhä. Survey: A survey on search-based software design. Computer
Science Review, 4(4):203–249, Nov. 2010.

[22] S. P. Reiss. Automatic code stylizing. In Proceedings of the Twenty-
second IEEE/ACM International Conference on Automated Software
Engineering, ASE ’07, pages 74–83, New York, NY, USA, 2007. ACM.

[23] C. U. Smith. Performance Engineering of Software Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1990.

[24] N. Ubayashi, J. Nomura, and T. Tamai. Archface: A contract place
where architectural design and code meet together. In Proceedings of the
32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 75–84, New York, NY, USA, 2010. ACM.

16



[25] R. Vasconcelos, M. Schots, and C. Werner. An information visualization
feature model for supporting the selection of software visualizations.
In 22nd International Conference on Program Comprehension, ICPC
2014, Hyderabad, India, June 2-3, 2014, pages 122–125, 2014.

[26] G. Villavicencio. A new software maintenance scenario based on refac-
toring techniques. In 16th European Conference on Software Mainte-
nance and Reengineering (CSMR 2012), Zseged, Hungary, March 2012.
IEEE.

[27] G. Villavicencio. Software maintenance like maintenance in other en-
gineering disciplines. In Proceedings of the 22Nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, FSE
2014, pages 853–856, New York, NY, USA, 2014. ACM.

17


	Introduction
	Scaling up the BML
	Quality Synchronization
	Structural Synchronization
	Integrating both Synchronization Mechanisms

	Discussion
	Conclusions

