
ANewSoftwareMaintenanceScenarioBasedonRefactoringTechniques
GustavoVillavicencio

UniversidadCatólicadeSantiagodelEstero,4200SantiagodelEstero,Argentina
gustavov@ucse.edu.ar

The problem
Some initial observations that triggered the current work:

•Some literature emphasizes that understanding and efficiency are opposite programming properties.

•Understanding is critical for maintenance, and efficiency for running.

•Many refactorings are understanding-oriented refactorings (renamed as reverse refactorings).

•Their inverses can be considered as efficiency-oriented refactorings (renamed as forward refactorings).

Can we propose more relevant and useful properties than understanding and efficiency to
categorize refactoring techniques? It is almost the natural way to classify refactoring tech-
niques. However, viewing refactorings from this perspective entails further consequences.

•Regarding the current state of the art in refactoring we want to highlight some aspects:

– Refactoring is an activity performed in the context of many others: during code examination, understanding, design improving, maintenance, etc. That
is, refactoring is a transversal activity to other ones. The lack of a well-organized application context makes refactoring a little confusing and/or a not
well-organized activity, and so many refactorings are executed on the fly. Here we propose a framework which might provide some insight into to the
application of refactoring techniques.

– If the refactor-to-understand pattern [2, 7] is taken as a technique to understand programs, the information used throughout the application process must
be properly saved [1] to be reused for new programmers (those who do not know the code being analyzed) faced with comprehension and maintenance
activities.

An Initial Catalogue of Refactorings

Reverse Refactorings Forward Refactorings
Splitting refactoring Merge refactoring

Removing accumulator parameter Introducing accumulator parameter
General function abstraction Function specification

Fission Fusion
Folding Inlining

Replacing recursion by combinator Replacing combinator by recursion
Introducing mutual recursion Remove mutual recursion

Removing memoization Memoization
- Worker / Wrapper

A First Consequence
+ efficiency
- understanding

+ understanding
- efficiency

Monolithic
source
code

Reverse refactoring

Forward refactoring

Sequences of refactoring
The next graphs show the sequences of reverse and forward refactoring respectively, applied to the source code example in the paper. The nodes represent

a code artifact, and the arrows the refactoring applied. The arrows can be of two types: filled arrow represent decomposition and dashed arrow transitions
between versions.

countWs6

loopWs6

auxCount auxBool

counts

. splitting .

countC countW

countWs3

recursion by operator

remove acc.param.

countWs5

countWs6

intro. mutual rec.

Information example
• Preconditions /

Postconditions

• Refactoring ratio-
nale explanation

Information support
• Natural text

• Semi-formal lan-
guage

– RASCAL

countWs4

countL

By reverse refactoring

counts

. merging .

countC countW

countWs3

combinator by recursion

intro acc.param.

countWs5

countWs6

remove mutual rec.

countWs4

countL

By forward refactoring

Both representations can be viewed as new “dynamic” representations for program com-
prehension. They resemble what in the other engineering disciplines are the disassembly
manuals.

Open question

Up to now we do not have empirical evidence for stating that the
comprehension process of programmers who do not know the
code can be improved by providing information extracted from
the refactoring process. The refactor-to-understand pattern im-
proves the understanding of the programmer who is performing
the refactoring process. The hypothesis supported here is that the
comprehension process of those programmers who are not famil-
iar with the code will be significantly improved by extracting the
information from the reverse refactoring process and render it the
proper way.

Further Consequence: A NewMaintenance Scenario

Suppose that in the previous context, where more than one comprehensible
version is available after the application of reverse refactorings, we want to
use some of such versions to introduce updating instead of modifying the
(monolithic) running version directly.

Maintenance
request

End comprehensionprocess

Program comprehension Maintenance

System running

Reverse refactorings

Forward refactorings (system running again)

Open question
One immediately question arises: what is the most appropriate version
to carry out a specific maintenance request? That is, if we have a more
comprehensible version where it should be easier to introduce modifica-
tions in order to reply a specific request, and assume that we can recon-
struct the (monolithic) efficient version after such modifications, why not
using such version for maintenance? In the paper example, for instance,
the required modifications have been introduced in the version gener-
ated by removing accumulation parameter refactoring, i.e. countWs5
function. However, the same modification can also be introduced in the
version generated by the application of introduction mutual recursion
refactoring, i.e. countWs6. However, in the last case modifications are
harder to handle since the critical sentences are now split in other two
functions.

Synchronization Between Versions
In real working conditions we must relax the restriction in order to allow

modifications to break the sequence of forward refactoring (those obtained
by reversing the reverse refactoring) for restoring the system. Then a new
sequence of forward refactoring must be set up. Interestingly, the next time
the artifact has to be maintained the sequence of reverse refactorings to be
applied is obtained by reversing the last sequence of forward refactoring.

Running In Maintenance

Broken forward refactoring sequence

rr1 = f r−1
1

..

.
Sequence for free

rr0

f r0

f r1...New sequence

Formalization
A lot of work has been done in other areas providing the foundation for the

approach being described.

•Program inversion

In the same way compression-decompression or coding-decoding prob-
lems have been studied in the program inversion area, reverse and
forward refactorings are also excellent candidates to be studied.

•Composing refactorings: In many refactorings, the application of another
of them entails the previous application of other one. So, refactorings can be
combined to set up sequences of refactorings. In our context such sequences
can be constructed in both directions saving a lot of work.

•Conditional transformation: Going further on refactoring composition we
can also construct composite refactorings that are reusable on arbitrary pro-
grams [6].

Bidirectional Transformations
Bidirectional transformations are mechanisms for maintaining the consis-
tency of two (or more) related sources of information.

lens
target u target

put
get

source source
The well-known problem on view updated can be enunciated as follows.
Let’s take a source of information s, originally a database. A function get
is a query such that a specific view is generated:v = get(s). The function u
updates the captured view v and generates a new one v′. The problem is how
to propagate the changes in the view v′ on s.

The purpose of bidirectional programs is kept consistency between source
and target. With this aim, bidirectional languages model the forward and
backward transformations under the same expression; that is, every expression
can be read in both directions!
Broadly speaking, lenses are designed to guarantee three main properties [4]:

•Robustness. The modifications in the view are carried out without having
to consider whether they are consistent with the underlying source.

•Lenses propagate view updates exactly to the source.

•When possible, lenses preserve any source of information that is not re-
flected in the view.

RR and FR as Bidirectional Transformations
We can fit the current maintenance scenario based on reverse and forward

refactoring in the bidirectional transformation context as follows:
ref.version m ref.version

FR
RR

source source

The maintenance m is performed on the refactored version obtaining a refac-
tored version updated. The important issue here is how to model the forward
transformation in order to inject the changes made in the refactored version
into the monolithic and efficient source code.

Unlike the original view update problem where the target obtained by the get
function application loses information, here the refactored version obtained is
semantically equivalent to the original one. It means that each pair of reverse
refactoring with its inverse can be designed as bijective lenses.
Feasibility

The most challenging aspect to solve is the put function that propagates the
changes to the source code. Regarding the technology available to cope with
such problem there are many successful experiences in the application of bi-
jective lenses: Janus [8], XSugar [3], biXid [5].

Although the domain of refactorings is more complex than the previous ones,
refactorings and forward refactorings specifically represent a sound and well-
understood framework.

We require a language of refactoring lenses for:
•Designing pairs of reverse and forward refactoring. It would involve

design of lenses for typical syntactic structures: sequences, conditional,
iteration, recursion, and so on, depending on the language being
handled. This aspect should be generalized to extend the spectrum of
the lenses.

•Operators for combining, removing and inserting refactoring lenses in a
sequence. Furthermore, extend such operators in order to handle
sequences of refactoring as unit.

•Operator for refactoring lenses parallelization.
Benefits
•The proposed classification of refactorings provides:

– A well-balanced environment for understanding and maintenance.
– It can improve the application of refactorings.
– It can encourage the development of new refactorings.
– It can improve the design of refactoring tools, promoting and

encouraging the development of new ones.

•Program understanding is improved by reverse refactorings.

•Reverse refactorings unveil the critical fragments making the
introduction of modification easier.

•A new understanding-oriented dynamic view of the code artifact
structure.

•The proposed approach emphasizes the inside-out maintenance, which
means that:

– There is a framework to introduce changes in a more systematic way.
– Many changes can be automated: The critical modifications can only

be introduced by the programmers, the rest must be automated.
References
[1] Andrew P. Black, Danny Dig, and Chris Parnin. Gathering refactoring data: a comparison of four methods. In

2th Workshop on Refactoring Tools, Nashville, Tennessee,USA, 2008. ACM.

[2] Bart Du Bois, Serge Demeyer, and Jan Verelst. Does the "refactor to understand" reverse engineering pattern
improve program comprehension. In Ninth European Conference on Software Maintenance and Reengineering

(CSMR’05), Manchester,UK, March 2005. IEEE.

[3] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for xml languages. Inf. Syst., 33(4-
5):385–406, June 2008.

[4] John Nathan Foster. Bidirectional Programming Languages. PhD thesis, Department of Computer & Information
Science, University of Pennsylvania, Pennsylvania, USA, 2009.

[5] Shinya Kawanaka and Haruo Hosoya. bixid: a bidirectional transformation language for xml. SIGPLAN Not.,
41(9):201–214, September 2006.

[6] Günter Kniesel and Helge Koch. Static composition of refactorings. Sci. Comput. Program., 52(1-3):9–51,
August 2004.

[7] Gustavo Villavicencio. Refactoring for comprehension. In Draft Proceeding of the 8th. Trends in Functional

Programming, New York, USA, April 2007. Seaton Hall University.

[8] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Principles of a reversible programming language.
In Proceedings of the 5th conference on Computing frontiers, CF ’08, pages 43–54, New York, NY, USA, 2008.
ACM.


