
Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 1 of 22

Go Back

Full Screen

Close

Quit

Refactoring for Comprehension

Gustavo Villavicencio
Facultad de Matemática Aplicada

Universidad Católica de Santiago del Estero
Santiago del Estero, Argentina

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 2 of 22

Go Back

Full Screen

Close

Quit

1. Refactoring
Concept from external link

Refactoring is about “improving the design of existing code”
and as such, it has been practised as long as programs have been
written. The term refactoring specifically refers to a common
activity in programming and software maintenance: changing
the structure of a program without changing its semantics.

Or maybe more precise, restructuring [1]

Restructuring is the transformation from one representation
form to another at the same relative abstraction level, while
preserving the subject system’s external behavior (functionality
and semantics).

http://www.cs.kent.ac.uk/projects/refactor-fp/

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 3 of 22

Go Back

Full Screen

Close

Quit

2. Program comprehen-
sion/Program Understand-
ing/Reverse Engineering

Reverse engineering is the process of analyzing a subject system
to

• identify the system’s components and their interrelation-
ships and

• create representations of the system in another form or at
higher level of abstraction

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 4 of 22

Go Back

Full Screen

Close

Quit

3. Refactoring: Some tech-
niques (HaRe)

• Structural refactorings: Generalisation

• Renaming a definition

• Changing the scope of a definition

• Adding/Removing an argument

Weakness:

• Techniques applied in isolated and intuitive way

We are looking for a systematic refactoring strategy

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 5 of 22

Go Back

Full Screen

Close

Quit

4. Our approach for refactoring

Pointwise notation
(1) // Subsidiary pointfree denotation

(2)
���� ��Solution pointwise denotation Solution pointfree denotation

(3)
oo

Figure 1: The reverse program calculation process

• Phase (1): Source-to-source transformations

– removing parameter accumulation

• Phase (2): Formal refactoring

– point-free calculus
– pattern driven

• Phase (3): Reimplementation

– Haskell
– VDM-SL

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 6 of 22

Go Back

Full Screen

Close

Quit

5. Source-to-source transformations

During our experimentation we found that one of the most
useful source-to-source transformation is removing parameter
accumulation. We show an example from [3].

reset0t([],test0,(possum,negsum)) = ([],test0,(possum,negsum))
reset0t(n:l,test0,(possum,negsum)) =
reset0t(l,test0,set_sum(n,test0,(possum,negsum)))

set_sum(n,test0,(ps,ns)) =
if n==0 and test0 then
if ps>ns then
(0,ns)

else
(ps,0)

else
(ps,ns)

Figure 2: Program example with two accumulation parameters

reset0tt([],test0) = (0,0)
reset0tt(n:l,test0) = set_sum(n,test0,reset0tt(l,test0))

Figure 3: Program after removing accumulators

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 7 of 22

Go Back

Full Screen

Close

Quit

So, figure 3 may be handled by mutual recursion law, etc.

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 8 of 22

Go Back

Full Screen

Close

Quit

6. Formal Refactoring

Many laws and properties applied during the refactoring
phase are taken from the point-free calculus. But, here, for not
to be tedious, we show some of these related to co-product
and exponential only.

6.1. Co-product

To combine functions as f : C←− A and g : C←− B, we need
injectors

A
i1 // A + B B

i2oo

defined as

i1 a = (t1, a)
i2 b = (t2, b) (1)

Therefore, we combine f and g as follow

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 9 of 22

Go Back

Full Screen

Close

Quit

[f , g] : A + B −→ C

[f , g] x
de f
=

{
x = i1 a ⇒ f a
x = i2 b ⇒ g b

(2)

operator named either. By mean of this, we define the co-
product of functions

f + g
de f
= [i1 · f , i2 · g] (3)

Properties

• Cancellation

[f , g] · i1 = f
[f , g] · i2 = g (4)

• Reflection

[i1, i2] = idA+B (5)

• Fusion

f · [g, h] = [f · g, f · h] (6)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 10 of 22

Go Back

Full Screen

Close

Quit

• Absorption

[f , g] · (i + j) = [f · i, g · j] (7)

• Functor

(f · g) + (i · j) = (f + i) · (g + j) (8)

• Functor-id

idA + idB = idA+B (9)

6.2. Exponential

To combine functions f : C × A −→ B and g : A −→ B . . . we
“frozen” the C argument

fc : A −→ B

fca
de f
= f (c, a)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 11 of 22

Go Back

Full Screen

Close

Quit

thus, we have f c is a value of type B, but fc ∈ BA is a function!

BA de f
= {g|g : A −→ B} (10)

From here, we design the apply operator

ap : BA
× A −→ B

ap(f , a)
de f
= f a

• Cancellation

BA
× A

ap // B

C × A

f×id

OO

f

;;xxxxxxxxx

f = ap · (f × id) (11)

• Reflexion

BA
× A

ap // B

BA
× A

idBA×id

OO

ap

;;xxxxxxxxx

ap = idBA (12)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 12 of 22

Go Back

Full Screen

Close

Quit

• Fusion

BA
× A

ap // B

C × A

g×id

OO

g

;;xxxxxxxxx

D × A

f×id

OO g·(f×id)

DD

g · (f × id) = g · f (13)

• Absorption

DA
× A

ap // D

BA
× A

f A
×id

OO

ap // B

f

OO

C × A

g×id

OO

g

;;wwwwwwwwww

f · g = f A
· g (14)

where we use another functional combinator

(f A)g
de f
= f · g (15)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 13 of 22

Go Back

Full Screen

Close

Quit

• Functor

(g · h) = gA
· hA (16)

• Functor-id

idA = id (17)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 14 of 22

Go Back

Full Screen

Close

Quit

7. (Pattern-driven) Formal Refactoring

The calculated patterns lead the transformational process.

• For list

〈|h|〉Nil = h1
〈|h|〉Cons = h∗2 · τA,L · (id × 〈|h|〉)

(18)

• For Binary tree

(|h|)Lea f a = h1 a
(|h|)Join t1 t2 = h∗2 · ψ · ((|h|) × (|h|))(t1, t2) (19)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 15 of 22

Go Back

Full Screen

Close

Quit

8. An example
The example use a list datatype involving the
monad State. But more experiments we have
carried out on binary tree, for example, and
handling other side effects.

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 16 of 22

Go Back

Full Screen

Close

Quit

A commutative diagram is often used as a graphical tool to
get a quick view of the function we are interested in.

L
〈|sms|〉

��

1 + Int × Linoo

id+id×〈|sms|〉
��

(Int × S)S ((1 + Int × Int) × S)S
(h×idS)∗
oo 1 + Int × (Int × S)S

δL
Int

oo

(20)

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 17 of 22

Go Back

Full Screen

Close

Quit

The pattern-driven calculational/transformational process ap-
plying, among others, properties and laws from the point-
free calculus.

〈|sms|〉 · in
= {(20)}

h × id • δL
Int · (id + id × 〈|sms|〉)

= {distribution law definition}

h × id • [î1, î2 • τInt,L] · (id + id × 〈|sms|〉)
= {kleisli composition definition}

(h × id)∗ · [î1, î2 • τInt,L] · (id + id × 〈|sms|〉)
= {(6)}

[(h × id)
∗

· î1, (h × id)
∗

· î2 • τInt,L] ·
(id + id × 〈|sms|〉)

= {lifting functor definition}

[(h × id)
∗

· (unit · i1), (h × id)
∗

· (unit · i2) • τInt,L] ·
(id + id × 〈|sms|〉)

= {associativity and second kleisli triple property}

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 18 of 22

Go Back

Full Screen

Close

Quit

[(h × id) · i1, (h × id) · i2 • τInt,L] ·
(id + id × 〈|sms|〉)

= {(14) in reverse}

[(h × id) · (i1 × id), (h × id) · (i2 × id) • τInt,L] ·
(id + id × 〈|sms|〉)

= {“bi-distribution” of ×with respect to composition in reverse}

[(h · i1) × (id · id), (h · i2) × (id · id) • τInt,L] ·
(id + id × 〈|sms|〉)

= {identity and h definition}

[([0,+] · i1) × id, (([0,+] · i2) × id) • τInt,L] ·
(id + id × 〈|sms|〉)

= {(4)}

[0 × id, (+ × id) • τInt,L] · (id + id × 〈|sms|〉)
= {(7) and kleisli composition definition}

[0 × id, (+ × id)∗ · τInt,L · (id × 〈|sms|〉)]

Since in = [Nil,Cons] we can conclude that

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 19 of 22

Go Back

Full Screen

Close

Quit

sms l = \s -> mfoldL(return 0, \x y -> do {c <- tick;
return(x+y)}) l

Figure 7: sms function refactored by mfoldL operator

nmfoldL :: Monad m => (m a, b -> m a -> m a) -> [b] -> m a
nmfoldL (h1,h2) = mfl
where mfl [] = h1

mfl (a:as) = h2 (a) (mfl as)

Figure 8: mfold operator for lists without distribution law

〈|sms|〉Nil = 0 × idS

〈|sms|〉(Cons) = (+ × idS)∗ · τInt,L · (id × 〈|sms|〉)
(21)

Matching (21) and (18) . . .

8.1. An alternative refactoring

But, in this case, we can show another way to refactor leaded
by other pattern.

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 20 of 22

Go Back

Full Screen

Close

Quit

sms = \s -> nmfoldL(return 0,\e r -> do {c <- tick;

x <- r; return(e+x)})

Figure 9: sms refactored by nmfoldL operator

9. Future directions
• To analyze more complex cases involving monad

transformers

• To apply more abstract patterns as mentioned by
[2]

• Patterns for specific domain problems?

• Funtional setting for reengineering imperative
code?

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 21 of 22

Go Back

Full Screen

Close

Quit

10. Conclusions
• The refactoring process is pattern driven

• We can calculate specification

• The patterns are calculated . . . not designed

Refactoring

Program . . .

Refactoring: . . .

Our approach . . .

Source-to- . . .

Formal . . .

(Pattern- . . .

An example

Future directions

Conclusions

Home Page

Print

Title Page

JJ II

J I

Page 22 of 22

Go Back

Full Screen

Close

Quit

References

[1] E.J. Chikofsky and J. H. Cross II. Reverse engineering and design
recovery: a taxonomy. IEEE Software, 7(1):13–17, 1990.

[2] Jeremy Gibbons. Design patters as higher-order datatype generic
programs. In Workshop on Generic Programming, Portland, Oregon,
USA, September. ACM SIGPLAN.

[3] G. Villavicencio. Reverse program calculation by conditioned slicing.
In Proceedings of the 7th European Conference on Software Maintenance
and Reengineering, pages 368–378, Benevento, Italy, March 2003. IEEE
CS Press, California, USA.

	Refactoring
	Program comprehension/Program Understanding/Reverse Engineering
	Refactoring: Some techniques (HaRe)
	Our approach for refactoring
	Source-to-source transformations
	Formal Refactoring
	Co-product
	Exponential

	(Pattern-driven) Formal Refactoring
	An example
	An alternative refactoring

	Future directions
	Conclusions

