
Universidad Católica de
Santiago del Estero
Facultad de Matemática Aplicada

Technical Report TR-804

Handling State in Reverse
Program Calculation

Gustavo Villavicencio

Campus de la UCSE
gustavov@ucse.edu.ar

1

Abstract

The Reverse Program Calculation is the process by which starting
from imperative source code we go up to more abstract representation,
usually expressed in point-free style. It is a really calculational process.
In previous works, we have used pure functional expressions as sup-
port for denotational sematics, avoiding the treatment of side effects.
In this paper we are treating with the monad State in the reverse pro-
gram calculation process. This monad is particularly interesting, since
it involves a implicit paramenter, the state, which becomes the reverse
calculation process a bit more complicated. To this purpose, new op-
erators, properties and laws are introduced in the context of the reverse
calculation process.

2

1 Introduction

The Reverse Program Calculation (RPC) or reverse program specification [9,
12] supported by slicing techniques [2, 15] et al., have been treated in pure
functional setting. However, the real world requieres to deal with complex
situations which becomes essential the use of more sophisticated formalisms
than those used in the pure functional context. Such situations, usually involve
side effects.

That is, in previous works [9, 12], we have not attacked the difficulties
that side effects involve. This was because, we have avoiding the treatement
of complex situations at the begining of our research. However, in real condi-
tions, the use of side effects is usual and so, their handle is quite important in
the RPC context.

So, in real programs, not all the functions return values that only depend
of the input data. To turn possible the side effect treatment in the functional
context, the functional community have adopted the concept of monad [7, 8].
Although the idea was developed by Moggi to structure denotational seman-
tics, was Wadler who introduced the concept to the functional context [13].

By means of the monad application, the critical properties of referential
transparence and equational reasoning are restored, and therefore, the calcu-
lational process we are proposing is still possible.

Specifically, in this paper we are going to operate on a specific side effect,
i.e. state, from the RPC perspective. This analysis is very interesting, since
the monad State requires the use of exponential datatypes, and thus, of law,
properties, and operators, which are not presents in other monads.

This paper is organised as follows. In section 2 we will introduce the basic
concepts related to monads. Then, we will develop the monad State concept in
section 3. The RPC strategy will be presented in section 4, where we develop
the theory that will applied in an example. In the last two sections, 5 and 6,
we will develop the work in front and the conclusions, respectively.

2 Monads

In the Eugenio Moggi’s paper on monads [8], the main matter is distinguish
functions that return a value and it only dependent of the input arguments,

3

from those functions that return some value as consequence of their input ar-
guments and can also generete another results like side effects, nondetermin-
ism, IO, etc. In certain contexts [1] et. al., monads are also reference as triples.

Formally, a triple T = (T, η, µ) in the C category is a (endo)functor T :
C −→ C and two natural transformations(polymorphic functions) η : idC ⇒
T and µ : TT ⇒ T which satisfices the following properties

µ · µT = µ · Tµ (1)

µ · Tη = µ · ηT = idC (2)

(1) is called the associative law of a monad as (2) the left and right unit of a
monad.

The context where the monads become well known was in the functional
programming setting [14]. In it, monads are interpreted like a triple kleisli.
A kleisli triple (M,η, ∗) in a C category, is composed by a functor at objects
level M : Obj(C) −→ Obj(C), a natural transformation η : I ⇒ M , and a
extension operator f∗ : MA −→ MB where f : A −→ MB, such that the
following properties are satisfaced:

η∗A = idMA (3)

f∗ · ηA = f (4)

f∗ · g∗ = (f∗ · g)∗ (5)

where f : A −→MB y g : B −→MC.

It is important to note, that the extension operator supplies a mechanism
to compose monadic funcions, like two previously defined. That is

g • f def
= g∗ · f (6)

Based on this definition, we can determine that the laws (3) and (4), estab-
lishes that η is the right and left identity, as long as (5) establishes that the
composition is associative.

Once the kleisli triple is defined, we are in condition to define the Kleisli
Category. Let a triple kleisli (M,η, ∗), a kleisli categeory CM is defined as:

• The objects in CM are the same that in C.

4

• Los morfismos CM (A,B) ≡ C(A,MB).

• Identidad est’a dada por ηA : A −→MA.

• La composici’on es dada por la composici’on kleisli (6).

2.1 Monads in functional programming

The previous definition of the kleisli triple, it can be expressed in the following
way in the functional programming context: (M,unit, ?). M is a type con-
structor, unit : A −→ MA a polymorphic function, and ? : MA × (A −→
MA) −→MA a polymorphic operator, usually called bind.

The function composition in functional programming is denoted by m?f ,
what in kleisli notation would be f∗(m). That is, m is evaluated generating
a result that is taken by f as input, and then f is evaluated. Using lambda
notation we would have: m ? λv.f .

As example, we take the Exception monad, i.e. which model exceptions
in a program. Let E the type of exception values produced by a program, then
MA = A + E is the type that model successful computations, or fail to gen-
erating exceptions of type E.

Regarding unitA : A −→ A + E, it can be modelled by the injection i1.
The extension operator applicable on a function f : A −→ MB, meanwhile,
it can modelled as ∗ = [, i2]. That is

f∗ : MA −→MB
f∗ = [f, i2]

(7)

In particular, and because in this work we are interested in the monad State

3 State

In this section we are going to treat how the state are handling in a functional
setting. But before, some basic concepts are needed.

3.1 Exponentials

As we known, in cases where f : C ×A −→ B and g : A −→ B, we can use
split operator but recurriendo to a previous interface.

5

fc : A −→ B

fca
def
= f(c, a)

(8)

That is, making irrelevent the first argument of the function domain. In con-
sequense, we can now to compose the previous functions by mean of the split
opetator: 〈fc, g〉.

It is important take in mind that, for f : C × A −→ B, fc denote a value
of typeB (that is fc ∈ B), mientras que fc denote a function of typeA −→ B
(that is fc ∈ BA), where

BA = {g|g : A −→ B} (9)

construction which is called exponential.

Based on this new data type, we can define a new operator that take a
function and apply it. It is know, as application operator.

ap : BA ×A −→ B
ap(g, a) = g a

(10)

Returning again to the functions f : C × A −→ B, we can think on the
operation that for each c ∈ C it generate fc ∈ BA. It can be seen like a
families of functions indexed by c, that could be denote as

f̄ : C −→ BA

(f̄ c)a = f(c, a)
(11)

From here we can say that, f̄ is more “tolerat” than f since not requires both
arguments at the same times for its evaluation.

Some laws are satisfes by exponentials

• Cancellation
f = ap · (f × id) (12)

• Reflexion
ap = idBA (13)

• Fusion
g · (f × id) = g · f (14)

• Absortion
f · g = fA · g (15)

6

• Functor
(f · g)A = fA · gA (16)

• Functor-id
idA = id (17)

In (15) we can note the use of a new operator, which because f is involved
we can call it “composed with f”. More preciselly, f : B −→ C and fA :
BA −→ CA, so fA can accept g : A −→ B as an input function and defined
it as

(fA)g
def
= f · g (18)

3.2 Monad State

One of the more difficult monad to handle is the monad State, since it involves
an additional argument: The state. In imperative programming the state is the
collection of all global variables, and it is passed from one function to another
in a sequential way. Therefore, if we have function f : A −→ B we can
use the next expression to model the implicit state passing in the imperative
context as

f × idS : A× S −→ B × S (19)

By other side, as usual, the monad is represented algebraically like a triple

S = (M,η, µ) (20)

with the following types for each components

MA : S −→ A× S and also
: (A× S)S (21)

ηA : A −→ (A× S)S (22)

µ : ((A× S)S × S)S −→ (A× S)S (23)

Now, returning our view on (19) we must note that

A× S −→ B × S
∼=

A −→ (S −→ B × S)
=

A −→ (B × S)S

7

So, f is a monadic function, i.e. a state monadic function. Therefore, the
morphism f : A −→ (B × S)S in C, related to the f : A −→ B in CM, can
be constructed by means of (11)

f × idS : A −→ (B × S)S (24)

i.e. the f transpose is the state monadic function.
We can go further on (24) and apply it the extension operator from the

kleisli triple, and note that

(f × idS)∗ : (A× S)S −→ (B × S)S (25)

Going further on (25) we can observe that

(f × idS)∗ = (f × idS)S (26)

by means of (18).
Regarding to η definition, a first aproximation can be expressed by λ no-

tation

ηA = λs.(a, s) (27)

But here, we are interested in a point-free version. By (22) we know the type
of η. At the same time we know that (A×S)S ∼= AS ×SS , so we can rewrite
(27) as

unitA : A −→ AS × SS (28)

from where we can establish that

π̄1 : A −→ AS

π̄2 : A −→ SS

It is because, starting from (11) and proceeding in reverse order, we find that

π1 : A× S −→ A
π2 : A× S −→ S

In consequence, we can determine that

unitA = 〈π1, π2〉 (29)

or what would be the same unitS = 〈π1, π2〉.
With regard to µ definition, we proceed as follows. As we can notice, we

8

have that, so much in the domain as in the codomain of µ there are exponen-
tials. As Already have been indicated, the implicit operator is the function
application (10). Well then, if we replace B = A× S and A = S in (10), we
would get a particularizaci’on of (10) with the new data type in which we are
interested

ap : (A× S)S × S −→ A× S
ap(f, s) = fs

(30)

So, (30) with exception of the outer exponent is almost (23). In consequence,
on the base of the ap operator, we can obtain a new one with the types required
by µ, as follows

(ap)∗ : ((A× S)S × S)S −→ (A× S)S

(ap)∗(f, s) = apS,A×S · apS,SA×S
(31)

So, apS is a functional operator that allow “compose with ap” (18). Obvi-
ously, we know by (26) that (ap)∗ = apS .

It is clear also, that from (30) we can to obtain the transpose that would
have the following signature

ap : (A× S)S −→ (A× S)S (32)

from where we establish that

id(A×S)S = ap (33)

the identity functor is the transpose of the function application.

4 The reverse program calculation process

To make easy the understanding of the RPC process, usually we compare
it with the Laplace transformation. Based on this constrast, we construct a
schematic view shown in graph 1

Starting from pointwise expressions, usually written in HASKELL[6] or
VDM-SL[5], we try to obtain an equivalent point-free expression. To reach
this target, succesive transformation steps are performed on the pointwise ex-
pressions. The process finish when we obtain an expression that is handle by
some property or law accesible from a calculus. Commonly, to become clear
what is the law or property involved, a commutative diagram is constructed

9

Pointwise notation
(1) // Subsidiary pointfree denotation

(2)

���� ��Solution pointwise denotation Solution pointfree denotation
(3)

oo

Figure 1: Laplace approach applied to RPC process

from the last pointwise expression obtained. Why, we are translating point-
wise expressions in point-free expressions? Because the reasoning process is
more easy on point-free expressions, and because this kind of denotation is
more compact and abstract than pointwise denotation. This is the process rep-
resented by arrow (1) in graph 1.

Once in the point-free side, the real calculational process is performed.
From the commutative diagram constructed in the previous phase, we extract
a point-free expression which is summited to the applications of laws and
properties accesible from a calculus. The process ends, when a solution is
calculated, i.e. when no law and property can be applied. This is the process
sketched by arrow (2) in graph 1.

At this point, we have calculated a very compact and abstract program
representation, and therefore, a formal reverse engineering process have been
outlined. To this process, we call it Reverse Program Calculation (RPC).
However, to turn more useful the RPC process, would be desirable to re-write
the calculated solution as pointwise expressions again. Furthermore, due to
the calculated solution is a formal specification of the program fragment anal-
ysed, we can proceed also, with a re-implementation in a different support
than the original. So, following any way, the whole process becomes a formal
reengineering process. This last phase is represented by arrow (3) in graph 1.

Unfortunately, in the present state of our research the described process
is a bit more complicated in practice. The reader will can appreciate some
application difficulties during the developement of an example in section 4.4.
These will be descussed in detail in section 5.

In order to be possible to develop an example, in the following sections we
will introduce the theory which will be applied to it. Other laws, properties
and operators have already been presented in [9, 12].

10

4.1 Monad state properties

Although in section 3 we have introduced the monad State (20), we have not
proved that it is a monad really. Therefore, based on the previous definitions
in section 3, we are going to prove the usual laws (3)-(5) for the monad State.
However, before the proofs, it is necessary some other definitions. First, we
must indicate that instead operate on f : A −→ (B × S)S in the kleisli
category CM , we are going to operate on the related morphism f : A −→ B
in the category C. In this way

unit = 〈π1, π2〉 (34)
∗ = ()S (35)

µ = apS (36)

where there is important to note, that the lifting operator ()S , it is applied to
the previous to the transpose. Finally, and before to continue with the proof of
the monadic laws, we prove that Mf = (unitB · f)∗ as follow

Mf

= { unit definition (34)}

(〈π1, π2〉 · f)∗

= { ×-absortion}

〈π1 · f, π2 · f〉∗

= { exponentials fusion (14)}

〈π1 · (f × idS), π2 · (f × idS)〉∗

= { by (26)}

〈π1 · (f × idS), π2 · (f × idS)〉S

= { projections promete through product}

(〈f · π1, idS · π2〉)S

= { ×-fusion in reverse}

((f × idS) · 〈π1, π2〉)S

= { by (16), identity and (26)}

(f × idS)∗ (37)

11

Subsequently, we show how a function f is lifting on the base of the pre-
vious definitions, that is, the property f∗ = µ ·Mf , where f : A −→MA.

µ ·Mf

= { definiciones (36) y (37)}

(apS) · (f × idS)S

= { Exponentials-functor}

(ap · (f × idS))S

= { by (26)}

(ap · (f × idS))∗

= { by (14)}

(ap · f)∗

= { by (13) and identity}

f∗ (38)

At this point, we are in conditions to prove the monadic laws as follow.
We prove (3)

unit∗

= { definition}

(〈π1, π2〉)∗

= { ×- identity}

(idA×S)∗

= { by (26)}

id(A×S)S (39)

We prove (4)

12

f∗ · unit
= { lifting and (34)}

(f × idS)S · 〈π1, π2〉

= { ×- absortion}

〈(f × idS)S · π1, (f × idS)S · π2〉

= { by (15) in reverse}

〈(f × idS) · π1, (f × idS) · π2〉

= { ×-absortion in reverse}

(f × idS) · 〈π1, π2〉

= { identity}

f × idS
= { and by (24) we know that}

f in CM (40)

Finally we prove (5)

13

f∗ · g∗

= { lifting operator}

(f × idS)S · g∗

= { by (16)}

(fS × idSS) · g∗

= { product definition}

〈fS · πS1 , idSSπS2 〉 · g∗

= { ×-fusion}

〈fS · πS1 · g∗, idSS · πS1 · g∗〉

= { lifting operator again}

〈fS · πS1 · (g × idS)S , idSS · πS2 · (g × idS)S〉

= { (16) in reverse}

〈fS · (π1 · (g × idS))S , idSS · (π2 · (g × idS))S〉

= { projections promote through product}

〈fS · (g · π1)S , idSS · (idS · π2)S〉

= { (16) again}

〈fS · gS · πS1 , idSS · idSS · πS2 〉

= { ×-fusion in reverse}

(fS · idSS) · 〈gS · πS1 , idSS · πS1 〉

= { ×-fusion in reverse}

(fS × idSS) · (gS × idSS) · 〈πS1 , πS1 〉

= { exponentials distribute over product and identity}

(f × idS)S · (g × idS)S · id(A×S)S

= { liftign operator}

(f∗ · g∗) · id(A×S)S

= { g is in C and identity}

(f∗ · g)∗

14

Once proved that (20) is a monad, we can go further and to introduce the
theory required to handle recursive functions which generate also, side effects.

4.2 Distribution laws

A monadM on a category C with product is called strong if it comes equipped
with a natural transformation

τA,B : A×MB −→M(A×B)
τ(a,m) = do{x← m; return(a, x)} (41)

(do notation is a syntactic sugar used in HASKELL to use monads easier)
i.e. τA,B transforms a pair value-computation into a computation of a pair
of values [8]. This natural transformation is called strength and satisfies the
following equations [10]

Mπ2 · τ1,A = π2 (42)

τA,B×C · (idA × τB,C) · αA,B,C = MαA,B,C · τA×B,C (43)

where π2 is a projection and α is a natural isomorphism [11]. Based on the
strong functor concept, we can define a strong monad [8].

Another important concept whose usefulness will become clear in the fol-
lowing sections is that of monadic extension of functor F in a category C. It is
a construction of type F̂ : CM −→ CM such that F̂A = FA, i.e. the objects in
C and CM are the same; and on monadic morphisms f : A −→MB, it yields
F̂ f : F̂A −→M(F̂B), or what is the same F̂ f : FA −→M(FB) in CM .

Closely related to the monadic extension concept is the so called distribu-
tion law [4]. It determines that every monadic extension F̂ is related one-to-
one to a natural transformation δF : FM ⇒MF . This natural transformation
performs the distribution of a monad over a functor. Pictorically

F̂ f = FA
Ff // FMB

δF
B // MFB (44)

For instance, we can define the distribution law for the sum operator

δ(A,B) : M A+M B −→M(A+B)
δ+(A,B) = [Mi1,Mi2] (45)

From here, we can derive a monadic extension to the sum functor. Given f+g
and composing with (45), we get

15

= [Mi1,Mi2] · (f + g)
+− absortion law

f+̂g = [Mi1 · f,Mi2 · g] (46)

So, f+̂g denotes the monadic extension of the + functor.

As example of distribution law, we can calculate the distribution law for
the list base functor. It will have type 1+A×ML −→M(1+A×L). Using
the natural transformation defined by (41), we proceed as follows

[Mi1,Mi2] · (id+ τ(A,L))

= { action of monad M in CM}

[(unit · i1)∗, (unit · i2)∗] · (id+ τA,L)

= { either of monadic function}

[unit · i1, unit · i2]∗ · (id+ τA,L)

= { Kleisli composition definition (6)}

[unit · i1, unit · i2] • (id+ τA,L)

= { lifting functor on injections}

[î1, î2] • (id+ τA,L)

= { +-absortion}

[î1, î2 • τA,L] (47)

This just calculated law will be used afterwards in an example.

4.3 Catas and homos

From a simple view, a monadic fold is a function that behaves like a fold,
but with the added property of producing effects. As approximation to its
definition we consider the next diagram in the Kleisli category CM

M A

f∗

��

F A
hoo

bFf
��

M B M F B
h′∗

oo

(48)

16

In this view, we are thinking of functions that involve a recursive process dur-
ing which side effects can be produced. From (48) we can infer property

f • h = h′ • F̂ f (49)

where h : FA → MA and h′ : FB → MB are monadic algebras and
f : A→MB a homomorphism between them.

By definition, and supposing that (M T, înT) is the initial monadic alge-
bra, then there is a unique homomorphism to any monadic algebra (M B, f).
In a diagram

M T

(|f∗|)
��

F T
dinToo

bF (|f∗|)
��

M B M F B
f∗

oo

(50)

Thus the following property:

h = (|f∗|)⇐⇒ h • înT = f • F̂ h (51)

So, the monadic fold operator [4], (|f |)MF : T −→ M B is then defined as
the least homomorphism between în and f [10]. However, we know that
h • înF = h · inF and F̂ h = δFB · F h, and therefore we can rewrite (51) as

h · inF = (f • δFB) · F h (52)

which pictorically would be

T

(|f |)

��

F T
inoo

F (|f |)
��

F M B

δF
B

��
M B M F B

f∗
oo

(53)

In this way, every homomorphism f : T −→ M A between the monadic
algebras înT and f , is also a homomorphism between the normal algebras inF
and f • δFB : F M B −→M B, and vice-versa [10].

17

4.4 An example

In figure 2, we shown a HASKELLprogram that sum a sequence of num-
bers, and return a pair (result,length of the sequence). Function tick increment
the state each time a computation is performed. get and put are methods of
the MonadState class. Therefore, we are using the monad State to know the
length of the sequence of numbers.

tick :: State Int Int
tick = do c <- get -- takes the state

put (c+1) -- replace the state
return c

sms :: [Int] -> Int -> State Int Int
sms [] = \s -> return 0
sms (e:l) = \s -> do tick

r <- sms l s
return (r+e)

evalsms :: [Int] -> Int -> (Int,Int)
evalsms l = \s -> runState (sms l s) s

Figure 2: Program example using monad State

From figure 2, we would want to construct a commutative diagram as (53)
as shown by (54).

L

(|sws|)

��

1 + Int× Linoo

id+id×(|sms|)
��

1 + Int× (Int× S)S

δL
Int

��
(Int× S)S ((1 + Int× Int)× S)S

(h×idS)∗
oo

(54)

18

From here we can extract the next property

sms · in
= { commutative diagram}

h× idS • δLInt · (id+ id× sms)

= { distribution law definition (47)}

h× idS • [î1, î2 • τInt,L] · (id+ id× sms)

= { kleisli composition definition (6)}

(h× idS)∗ · [î1, î2 • τInt,L] · (id+ id× sms)

= { by (26)}

(h× idS)S · [î1, î2 • τInt,L] · (id+ id× sms)

= { +-fusion}

[(h× idS)S · î1, (h× idS)S · î2 • τInt,L] · (id+ id× sms)

= { îj = ij}

[(h× idS)S · i1, (h× idS)S · i2 • τInt,L] · (id+ id× sms)

= { exponential absortion in reverse (15)}

[(h× idS) · i1, ((h× idS) · i2) • τInt,L] · (id+ id× sms)

= { h structure}

[([0,+]× idS) · i1, (([0,+]× idS) · i2) • τInt,L] · (id+ id× sms)

= { using left distribution}

[([0× idS ,+× idS] · distl) · i1, (([0× idS ,+× idS] · distl) · i2) • τInt,L] · (id+ id× sms)

= { distl application}

[0× idS , (+× idS) • τInt,L] · (id+ id× sms)

= { kleisli composition again (6)}

[0× idS , (+× idS)∗ · τInt,L] · (id+ id× sms)

= { +-absortion and identity}

[0× idS , (+× idS)∗ · τInt,L · (id× sms)]

by either structural equality

19

sms ·Nil = 0× idS
sms · cons = (+× idS)∗ · τInt,L · (id× sms)

(55)

So, we have calculated a solution, i.e. a formal specification for the frag-
ment which is being analysed.

5 Future works

As have been presented, our strategy have some limitation. Regarding the
refactoring process applied on pointwise expressions (arrow (1)), we have not
defined common transformation rules in order to construct generalized trans-
formation schemes. We expect that these transformation schemes can be im-
plemented in a tool to become such process an automatic or semi-automatic
one.

During the calculational process, an important number of laws and proper-
ties can be used in each step. Therefore, the process can become difficult to be
handle by the reverse engineer. So, an automatic assitant is required to suggest
to the professional which laws or properties can be applied at each moment.

With relation to theoretical aspects, we are faced to resolve more complex
cases as those where more than one monad is involved, i.e. situations involv-
ing monads transformers. Preciselly, under real conditions the application of
monad transformers is very usual. Although we have not definitive results,
some experiments performed let us assume that the RPC complexity increase
in an importante rate.

6 Conclusions

In this paper we have shown how to handle monad State in the context of
the reverse program calculation process. To this end, we have introduced new
operators, properties, and laws, which have never been treated before in this
context.

In the future, some problems remain unresolved. Regarding the refactor-
ing process, we haven’t identified transformation rules to be applied through
this process. In the same direction, generic transformation schemes remain
also not identified. All of theses matters, are focused on the automatic support

20

definition to become practise the RPC process.

Regarding with more theoretical aspects, we must to begun the treatment
of monad transformers. In fact, the presence of a combination of monads is
very common in real applications, thus; this topic becomes important. Ac-
cording with the knowlodge we have at the moment, one way to follows to
handle this topic would be adjunctions [3].

References

[Barr and Wells2002] Barr, M. and Wells, C. (2002) , Toposes, Triples and
Theories, Revised version - Version 1.1

[Canfora et al.1998] Canfora, G., Cimitile, A., and Lucia, A. D. (1998) ,
Information and Software Technology (special issue on program slicing)
40(11/12), 595

[Fokkinga and Meertens1993] Fokkinga, M. and Meertens, L. (1993) , ...

[Fokkinga1994] Fokkinga, M. M. (1994) , Monadic Maps and Folds for
Arbitrary Datatypes, Technical Report Memoranda Inf 94-28, Enschede,
Netherlands: University of Twente

[IFAD1999] IFAD (1999) , VDM Tools, Technical report, Forskerparken 10,
DK-5230 Odensen M, Denmark: IFAD, http://www.ifad.dk

[Jones2003] (Jones, S. P. ed.) (2003) , Haskell 98 Language and Libraries,
Cambridge, UK: Cambridge University Press

[Moggi1989] Moggi, E. (1989) , In IEEE Symposium on Logic in Computer
Science, pp. 14–23

[Moggi1991] Moggi, E. (1991) , Informations and Computations 93(1), 55

[Oliveira and Villavicencio2001] Oliveira, J. N. and Villavicencio, G. (2001)
, In Proceedings of the 8th Working Conference on Reverse Engineering,
pp. 35–45, IEEE CS Press, California, USA

[Pardo2001] Pardo, A. (2001) , Theoretical Computer Science 260(Issue 1-
2), 165

[Simpson et al.2003] Simpson, A., Bucalo, A., and Führmann, C. (2003) ,
Theoretical Computer Science 294, 31

21

[Villavicencio2003] Villavicencio, G. (2003) , In Proceedings of the 7th Eu-
ropean Conference on Software Maintenance and Reengineering, pp. 368–
378, IEEE CS Press, California, USA

[Wadler1992] Wadler, P. (1992) , In 19’th Symposium on Principles of Pro-
gramming Languages, Albuquerque: ACM Press

[Wadler1995] Wadler, P. (1995) , In Advanced Functional Programming, No.
925 in LNCS, Springer Verlag

[Weiser1981] Weiser, M. (1981) , In Fifth International Conference on Soft-
ware Engineering, San Diego

22

