
Universidad Católica de
Santiago del Estero
Facultad de Matemática Aplicada

Technical Report TR-1013

Technical Report

Gustavo Villavicencio

Campus de la UCSE
gustavov@ucse.edu.ar

1

Abstract

The reverse engineering pattern Refactoring to Understand has been
proposed as an alternative to the so-called Read to Understand pattern.
Although the first has been reported as more effective than the second,
it is only true for the programmer performing the refactoring process.
That is, the code understanding is only gained by the programmer car-
rying out the refactoring. In this paper, we propose to refactor in a
specific direction, i.e. comprehension oriented. Thus, by a system-
atic comprehension-oriented refactoring, we plan to construct alterna-
tive versions of the code that allows new code readers to analyze the
software artifact from different perspectives.

2

1 Introduction

Refactoring [Opdyke1992, Fowler] has emerged as a technique for transform-
ing the source code while keeping its behavior. Usually, such transformations
are oriented to improve some quality aspects of a software component such as
extensibility, maintainability, efficiency, complexity, etc., [Mens and Tourwe2004,
Mens et al.2007]. Specifically, here we are focused on improving compre-
hension only; therefore, we argue that a particular set of refactoring must be
applied and/or refactoring sequences with that specific direction must be de-
signed.

It has been held by [Bois et al.2005] that the reverse engineering pattern
Refactor to Understand is better than the Read to Understand pattern in many
aspects. However, the comprehension gained is only for the programmer per-
forming refactoring, and it is neither represented or saved to be reused. To
solve this problem we propose to refactor a software artifact in a systematic
way for generating multiple artifact versions. In this way, such versions be-
come useful resources for comprehension by providing different artifact per-
spectives. Furthermore, comprehension is emphasized since the refactoring is
comprehension-oriented. That means that the applied refactorings and/or the
sequence of refactorings should show some specific behaviour, i.e. decompo-
sition (disassambling) or abstraction.

We focus on comprehension since it has been identified as the major fac-
tor during software maintenance [von Mayrhauser and Vans1995]. Thus, our
purpose is to generate artifact versions that provide further insight for com-
prehension, by applying comprehension-oriented refactorings. However, in
doing so such versions lose efficiency. The observation that comprehension
and efficiency are opposite program properties is not introduced in this pa-
per since such phenomenon has already been documented in other literature
[Hu et al.2006, Tullsen2002]. At the same time, it means that by reversing the
comprehension-oriented sequence the efficiency can be restored in the gener-
ated versions. For now, we call efficiency-oriented refactorings to the inverse
of the comprehension-oriented refactorings. Afterwards we will explain that
the efficiency-oriented refactorings (in the current context) are not undoing the
comprehension-oriented refactorings.

As we have argued, comprehension is critical for maintenance, an expres-
sion that can be complemented by “efficiency is critical for running”. Such
sentence can be combined with the kinds of refactorings identified before for
drawing the scenario shown in figure 1.
By this graphic we want to indicate that the comprehension carried out dur-
ing maintenance is executed on artifact versions which are different from the

3

Running
version

Maintenance
versions

Understanding-oriented refactorings

Efficiency-oriented refactorings

Figure 1: Synchronization between artifact versions.

one that is running, and that such versions are generated by understanding-
oriented refactorings. This scenario is new for software maintenance since in
this discipline the version that is running is the same as the one that supports
the maintenance (including comprehension) activities. However, figure 1 de-
picts exactly how other engineering disciplines operate on their artifacts: The
compact, complex, and monolithic artifact is disassembled in smaller pieces
to have a more detailed perspective. That is, the maintainer (who is also per-
forming comprehension before introducing any change), resorts to an entirely
different artifact “version” to execute his activities.

On the contrary, in software engineering the running version remains static
and unchanged throughout maintenance (and comprehension). By using refac-
toring techniques we can simulate, in software engineering, how other en-
gineering disciplines operate on their artifacts. That is, we can generate by
understanding-oriented refactorings multiple artifact versions that provide use-
ful insight for comprehension.

It is worth mentioning that figure 1 is more general and can involve as-
sumptions that we leave aside in this paper. Specifically, we refer to the
efficiency-oriented refactorings arc, which enclose a more “radical” meaning:
The modifications made during maintenance, on a properly selected version,
can be propagated back to the running version [Villavicencio2012]. Such issue
is not developed here. In this work, the mentioned arc simply denotes that ef-
ficiency can be restored by reversing the understanding-oriented refactorings.

The rest of this paper is organized as follows: Section 2 briefly describes
some facts observed in the literature that justify this work; section 3 presents
the strategy together with an example from the functional programming area;
section 4 deals with future challenges, and finally section 5 with the conclu-
sions.

4

2 Background

In the literature on refactoring and program comprehension there are evidence
that some issues have not been investigated in depth or from another perspec-
tive. This work tries to cover some of such “holes” and they will be treated
shortly here.

2.1 A refactoring can improve a quality aspect while damaging
other/s

During refactoring there are program properties in continuous tension, com-
prehension and efficiency are properties involved in such phenomenon. Im-
plicit in the maintainability quality factor, stipulated by the standard ISO
25000, is how comprehensible a software artifact is. At the same time, ef-
ficiency quality factor involves how fast an artifact is. However, some lit-
erature [Tullsen2002, Hu et al.2006] has explicitly recognized that compre-
hension and efficiency are two opposed programming properties. Implicitly,
[Bois and Mens2003, Kataoka2006] have accepted the same fact. Therefore,
if during a refactoring process we are trying to improve maintainability (com-
prehension), we could, at the same time, damage efficiency. In OOP, extract
method refactoring is an example of refactoring improving comprehension but
affecting efficiency. On the contrary, inline method refactoring is the inverse
of the previous refactoring that improves efficiency by damaging comprehen-
sion. It can be argued that such damages are insignificant but here we are
not quantifying them but trying to classify the refactorings according to those
opposite properties.

2.2 The question ’what am I refactoring for’ leads to a scheduling
of refactoring

Refactoring is an intuitive and planning-lacking activity [Murphy-Hill et al.2009].
So it can be assumed that this is due to the fact that refactoring is frequently
performed in a problem-driven way, i.e. the problem to solve states the refac-
toring to apply. Instead, here we propose an objective-driven refactoring, i.e.
led to enhance comprehension. An specific orientation of refactoring favors
the identification of the refactorings to be used, their schedule, and so their
implementation in an automatic support. It also favors the definition of new
refactorings from the scratch since, as shown in section 3, we know the char-
acteristics they should have.

5

2.3 The knowledge of refactoring must be saved to be reused

On the other hand, refactoring is a complex, expensive, and time-consuming
activity [Murphy-Hill and Black2008] Therefore, it is important to collect the
knowledge acquired during its execution in order to be reused in other ac-
tivities such as comprehension and maintenance. Regarding this subject, we
sustain that the schedule of understanding-oriented refactorings and the re-
sults generated by their application are valuable pieces of knowledge. Reverse
refactorings and their scheduling can be promoted by expanding their appli-
cability to all the languages in the domain [Verbaere2008, Hills et al.2012]
(language-independent refactorings). In this way, the gathered knowledge be-
comes critical in transforming programs in a comprehension-oriented direc-
tion.

3 Comprehension by Refactoring

Based on the previous observations we propose to extend the reverse engineer-
ing pattern Refactor to Understand in the following way:

1. The refactorings applied must be comprehension-oriented. To be cata-
loged as such, a refactoring o sequence of refactorings must show some
of the following characteristics:

(a) Disassembling or decomposition: The refactoring or sequence of
refactorings must lead to a successive fragmentation of the code.

(b) Abstraction: The refactoring or sequence of refactorings can lead
to an instantiation of a generic pattern. This pattern can be a lan-
guage or domain specific pattern.

2. According to the selected understanding-oriented refactorings plus the
new ones constructed from the scratch following the previous guide-
lines, a scheduling of refactorings must be defined. So, we will be able
to refactor in a specific direction and in a systematic way. Thus, the
reverse refactoring schedule outlines a solid support for comprehension
since the user can know a priori the orientation of refactoring, the spe-
cific refactoring or sequence of refactorings applied, the result gener-
ated, and the conditions under which each transformation is performed.

Some further explanations on these aspects are required. Disassembling
and abstract have a close relation with the concepts of chunks and beacons

6

respectively, observation that has also been made in [Bois et al.2005]. After-
wards, in the example, we will see concrete cases of these relationships.

Regarding item 2 we must consider that the disassembling or abstraction
effects can be obtained by a single refactoring or by a sequence of refactor-
ings. It not only depends on the current code arrangement but also on the de-
sign of the refactoring sequence. Further, a refactoring sequence can generate
intermediate versions that are less relevant for comprehension before getting
a more useful version where apply disassembling or abstraction. However,
the generation of these “irrelevant” intermediate versions can be necessary for
getting a final version exhibiting disassembling or abstraction.

An important issue to highlight is that we are not interested in the history
of refactoring of a code artifact. Instead, we are interested in generating all
the possible versions of the artifact in a systematic and automatic way, from
the most comprehensible but less efficient to the most efficient but less com-
prehensible.

With that objective in mind we classify those refactorings with the previ-
ous characteristics under the name of understanding-oriented refactorings and
their corresponding inverse ones under the name of efficency-oriented refac-
toring. However, to synchronize with the concepts of reverse and forward en-
gineering [Biggerstaff1989], we have renamed the first ones as reverse refac-
torings and the second ones as forward refactorings [Villavicencio2012]. So,
for instance, splitting refactoring in the reverse refactoring group has merge
refactoring as its inverse in the forward refactoring group, and vice-versa. Al-
though some literature has noted there are refactorings with inverses, here we
are going further by linking such refactorings with two opposite programming
properties.

It could be argued that not all refactorings can be cataloged according to
the properties proposed here. But not all refactorings are used in all areas
where this technique is applied. Thus, the refactorings used in refactoring
to patterns [Kerievsky2004] are not equally useful in refactoring to aspects
[Hannemann et al.2003]. Therefore, we sustain the idea of providing pro-
grammers with the ability to define their own reverse refactorings from the
scratch. The design of new refactorings with a specific aim has already been
introduced in other literature [Kniesel and Koch2004, Verbaere2008, Hills et al.2012].

Figure 2, which is a more detailed view of figure 1, shows what are the
expected effects of the previous classification on a monolithic artifact. Note
how some artifact parts can be further refactored than others. As we have
already indicated it is similar to how other engineering disciplines operate
during maintenance.

7

Although further experimentation is required, the high level refactorings
(in classes or methods, for instance) as well as the low level refactorings (in
local definitions) are useful in this context. But, in general, we can sustain
that fine-grained refactorings deliver more semantic information, which is a
helpful element for comprehension.

Finally, and following the parallelism with other engineering disciplines,
we must say that by following this approach, we want to construct an autom-
atized support for generating the disassembling manual of a software artifact.
Further, and as we have suggested in the figure 1, we would always keep this
manual updated (automatically) after each maintenance phase.

3.1 An Example

Suppose that after some analysis we have cataloged (in the functional pro-
gramming area) some refactorings [Brown2008] as shown in table 1. Suppose
also that we have implemented, in a tool, a schedule of reverse refactorings
shown in figure 3 (only a subset of the transformations in table 1 is consid-
ered), where filled dots are refactorings and the arcs or transitions are the in-
formation passed amongst them.

The dotted box is the replace recursion by operator refactoring that is
composed of two simpler refactorings. Figure 4 shows an incomplete view of
the components generated by the application of the previous schedule of se-
quence to a monolithic and complex artifact (the box on the left). In this figure
we start with the Haskell code which calculates the number of characters, lines
and words from an input string (function counts). At the beginning, we apply
splitting refactoring on each of the first three elements of the tuple returning
as result function loops.

Consequently we obtain three new subcomponents:

+ Efficiency
- Understanding

+ Understanding
- Efficiency

Running version Versions for comprehension

Monolithic
source
code

Reverse
refactoring

Forward
refactoring

Abstraction

Figure 2: Application of reverse and forward refactorings.

8

Reverse Refactorings Forward Refactorings
Splitting refactoring Merge refactoring
Removing accumulator parameter Introducing accumulator

parameter
General function abstraction Function specification
Fission Fusion
Folding Inlining
Replacing recursion by combinator Replacing combinator by

recursion
Introducing mutual recursion Remove mutual recursion
Removing memoization Memoization

Table 1: An incomplete catalog of reverse and forward refactorings.

t1Splitting

t2
Replace rec. by op.

t5Phase1

t3 t4

t7Phase2

Remove acc.param.

t6

Intro. mutualrec.

t8

Figure 3: Example of schedule of reverse refactorings.

1. The first one encapsulates all the calculations related to the c variable
in the tuple. After that, we apply the following sequence of refactor-
ings: remove accumulation parameter and replace explicit recursion by
generic operator. The complete transitions according to the schedule in
figure 3 are: t2, t4, t7. Only the final version is shown in figure 4, we
omit the intermediate version due to space reasons.

2. The second component encapsulates the calculations related to the w
variable in the tuple. In this case, the rest of the sequence of refac-
torings is: first phase of the replace recursion by operator refactoring,
remove accumulation parameter refactoring and introduction of mutual
recursion refactoring. Thus, the complete transitions are: t1, t3, t6, t8.
Here again, the intermediate versions generated are omitted.

3. The third subcomponent encapsulates the computations related to the l
variable. The rest of the sequence of refactorings after splitting refactor-
ing is the same as the first component:remove accumulation parameter

9

and replace explicit recursion by generic operator. So, the transitions
are as in item 1. As before, the intermediate version generated is omit-
ted.

In this example, all the applied refactorings are cataloged as reverse refac-
torings. Regarding the phases of replace recursion by operator refactoring,
phase1 is reached by transitions t1 and t4, but the latter aims at the dotted box
meaning that both phases are performed. Other refactorings used here can be
decomposed in smaller phases but it is irrelevant in the current example.

Note how in the case of the first and third components, the last versions
generated are expressed in terms of a generic operator (the abstraction in fig-
ure 2) that is in the standard Haskell libraries, i.e. foldr. Therefore, by knowing
how this operator works, we can understand these components. In these cases,
a function call to itself with a inductive structure (a list) as parameter acts like
a beacon invoking a recursive schema.

Regarding the second component we have calculated a further decomposi-
tion, isolating the calculations of a integer variable (auxCount) and the calcula-
tions of a boolean variable (auxBool) in separate functions. It is an example of
what is pointed out in section 3: the application of a refactoring sequence can

takeThree (a,b,c,d) = (a,b,c)

counts l = takeThree $
loops l (0,0,0,False)

loops [] (c,w,l,b) = (c,w,l,b)
loops (h:t) (c,w,l,b) | blanks h =

loops t (c+1,w,l,False)
loops (h:t) (c,w,l,b) | h==’\n’ =

loops t (c+1,w,l+1,False)
loops (h:t) (c,w,l,True) =

loops t (c+1,w,l,True)
loops (h:t) (c,w,l,False) =

loops t (c+1,w+1,l,True)

blanks c = (c==’ ’) || (c==’\t’)

countC l = loopcc l 0

loopc [] c = c
loopc (x:xs) c = loopcc xs (c+1)

countC2 = foldr (_ n -> 1+n) 0

countW l = fst (loopw l (0,False))

loopw [] (w,b) = (w,b)
loopw (h:t) (w,b) | blankw h =

loopw t (w,False)
loopw (h:t) (w,True) =

loopw t (w,True)
loopw (h:t) (w,False) =

loopw t (w+1,True)

blankw c = c==’\n’ || (c==’ ’) ||
(c==’\t’)

countWs16 l = fst $ loopWs16 $
reverse l

loopWs16 [] = (0,False)
loopWs16 (h:t) =
(auxCount (loopWs16 t) h,
auxBool (loopWs16 t) h)

auxCount (c,b) h |
(blankWs2 h || b==True) = c

auxCount (c,b) h = c+1

auxBool (_,_) h | blankw h = False
auxBool (_,_) h = True

countL l = loopl l 0

loopl [] l = l
loopl (h:t) l | h==’\n’ = loopl t (l+1)
loopl (_:t) l = loopl t l

check ’\n’ c = c+1
check _ c = c

countL2 = foldr check 0

Figure 4: Result of the application of schedule of reverse refactorings from
figure 3.

10

generate intermediate versions less useful for comprehension. In this case, the
last version exhibiting disassembling is more useful than the previous ones,
but the previous ones are necessary for introducing disassembling. Observe
here, that the refactoring has chunked the code in separate funcions: aux-
Count operating like a counter function and auxBool operating like a switch
function. Then, these two lower chunks are elements for composing a higher
level chunk, i.e. word counter.

So, the last versions calculated for each component and all the intermedi-
ate versions (not shown here) will provide different perspective of the respec-
tive component. The programmer performing comprehension can select such
version that better fits its programming style [Mohan et al.2004]. We consider
that providing different code arrangements is a helpful resource for compre-
hension since the same artifact can be viewed from different perspectives, and
also, because different programmers can agree with different programming
styles. Furthermore, on each representation obtained we can apply visualiza-
tion tools [Lemieux and Salois2006] for instance, or other kind of comprehen-
sion tools to get further insight.

3.2 Forward Refactoring is not Undoing a Reverse Refactoring

It may not be necessary to explain, but when reversing the refactorings just
applied, i.e. applying forward refactorings, we must reconstruct the original
monolithic artifact. We should also note that it has been assumed that the
monolithic artifact from which we started the process is the most efficient and
less comprehensible, and also the version currently running. However, this
will not always be the case, and by forward refactorings we could calculate
more efficient and less comprehensible versions.

Consequently, a mechanism searching for a sequence of refactorings to be
applied on the artifact in hand must consider that the selected sequence might
be a subsequence of a longer one. However, it has further consequences. Con-
sider the sequence of refactorings in figure 5, where the arcs are the refactor-
ings and the dots their output. Each ri represents a reverse refactoring.

r0

r1

r−1
0

r2

u1

r3

u2 u3

Figure 5: Application of a sequence (or subsequence) of reverse and forward
refactorings.

Let’s assume also, that r1 refactoring has been detected as the refactoring

11

to apply on the artifact in hand. So, by applying the subsequence r1, r2, r3 we
obtain the most comprehensible versions. But, what occurs with the reverse
refactoring r0 ? If the forward refactorings are simply implemented by un-
doing (ui) the reverse refactorings, u0 will never exist since r0 has not been
executed. Therefore, for executing the inverse of r0, forward refactorings must
be implemented as the real inverses of reverse refactorings: r−1

i (ri(P)) = P .
Although the version obtained after applying r−1

0 might not be useful for com-
prehension, as we have said at the beginning of this section, we could calculate
more efficient versions than the original one by forward refactorings, in fact,
by forward refactorings modeled in the specific way as we explain below.

4 Further Directions

Many research lines are opened from this entirely new approach for program
comprehension specifically related to the automatic support required: what
analysis must be carried out to gather information for scheduling reverse refac-
torings?, how must information like the one in figure 3 be represented?, which
mechanisms (algorithms) must be used to select the most appropriate sequence
of reverse refactorings?, how can this strategy be integrated with the technol-
ogy already developed in program comprehension?, etc. Although some of
these matters have already been treated in [Mens et al.2007] for instance, the
fact that here we are focused on improving comprehension, force us to con-
sider aspects like disassembling and abstraction in the refactoring schedule.

However, the more exciting challenge might be in the integration of this
comprehension approach in a maintenance environment. Although this com-
prehension approach can be built in any maintenance strategy, a question arises
(almost naturally) that outlines a new software maintenance scenario: Given
a maintenance request and after performing comprehension following the ap-
proach described here, instead of introducing the modifications in the running
version like the traditional software maintenance, why not make the modifi-
cations in the most suitable version (like other engineering disciplines) and
then, propagate them back (automatically) to the running version? It recalls
the Laplace transform immediately since the “solution” is founded in a sub-
sidiary representation and then translated back into the original representa-
tion. A first approach to the problem of propagating changes in this con-
text has been suggested in [Villavicencio2012], but an alternative one can be
considered, i.e. that emerging from the bidirectional transformations area
[Foster2009, Foster et al.2012]. The scenario depicted in figure 1 is exactly
the same environment where bidirectional transformations operate trying to
keep the synchronizations between artifact versions.

12

5 Conclusions

This paper proposes a way for extending the reverse refactoring pattern Refac-
tor to Understand so that the refactoring knowledge (figure 3) and the result
generated by its application (figure 4) can be reused for comprehension (and
maintenance). This entails the construction of an automatic support for trans-
forming programs in an understanding-oriented way. Basically, the idea is to
simulate how other engineering disciplines operate on their artifacts during
maintenance, i.e. the maintainer resorts to entirely different artifact “version”
for getting better comprehension before introducing any change.

References

[Biggerstaff1989] Biggerstaff, T. (1989) , IEEE Computer 22(7), 36

[Bois et al.2005] Bois, B. D., Demeyer, S., and Verelst, J. (2005) , In
Ninth European Conference on Software Maintenance and Reengineering
(CSMR’05), Manchester,UK: IEEE

[Bois and Mens2003] Bois, B. D. and Mens, T. (2003) , Describing the Im-
pact of Refactoring on Internal Program Quality, Technical report, Institute
of Computing Science, Faculty of Science, Université de Mons

[Brown2008] Brown, C. (2008) , Ph.D. thesis, University of Kent, Canter-
bury, Kent, England

[Czarnecki et al.2009] Czarnecki, K., Foster, J. N., Hu, Z., Lämmel, R.,
Schürr, A., and Terwilliger, J. F. (2009) , In ICMT2009 - International
Conference on Model Transformation, Proceedings, Vol. 5563 of LNCS,
Springer

[Foster2009] Foster, J. N. (2009) , Ph.D. thesis, Department of Computer &
Information Science, University of Pennsylvania, Pennsylvania, USA

[Foster et al.2012] Foster, N., Matsuda, K., and Voigtländer, J. (2012) , In
Spring School on Generic and Indexed Programming (SSGIP 2010), Ox-
ford, England, Revised Lectures. (J. Gibbons ed.), Vol. 7470 of LNCS, pp.
1–46, Springer-Verlag

[Fowler] Fowler, M., Refactoring Home Page,
http://www.refactoring.com

13

[Hannemann et al.2003] Hannemann, J., Fritz, T., and Murphy, G. C. (2003)
, In Proceedings of the 2003 OOPSLA workshop on eclipse technology
eXchange, eclipse ’03, pp. 74–78, New York, NY, USA: ACM

[Hills et al.2012] Hills, M. A., Klint, P., and Vinju, J. J. (2012) , In Proceed-
ings of the 5th Workshop on Refactoring Tools 2012. (P. Sommerlad ed.),
pp. 40 – 49, Rapperswil, Suisse: ACM

[Hu et al.2006] Hu, Z., Yokoyama, T., and Takeichi, M. (2006) , In Summer
School on Generative and Transformational Techniques in Software Engi-
neering (GTTSE’05). (R. Lämmel, J. Saraiva, and J. Visser eds.), Vol. 4143
of LNCS, Braga, Portugal: Springer-Verlag

[Kataoka2006] Kataoka, Y. (2006) , Ph.D. thesis, Information Science and
Technology of Osaka University, Osaka, Japan

[Kerievsky2004] Kerievsky, J. (2004) , Refactoring to Patterns, Pearson
Higher Education

[Kniesel and Koch2004] Kniesel, G. and Koch, H. (2004) , Sci. Comput. Pro-
gram. 52(1-3), 9

[Lemieux and Salois2006] Lemieux, F. and Salois, M. (2006) , In Proceed-
ings of the 2006 conference on New Trends in Software Methodologies,
Tools and Techniques (SoMeT 2006), pp. 22–47, Amsterdam, The Nether-
lands, The Netherlands: IOS Press

[Liu et al.2007] Liu, H., Li, G., Ma, Z., and Shao, W. (2007) , In Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, ASE ’07, pp. 489–492, New York, NY, USA: ACM

[Mens et al.2007] Mens, T., Taentzer, G., and Runge, O. (2007) , Software
and System Modeling 6(3), 269

[Mens and Tourwe2004] Mens, T. and Tourwe, T. (2004) , IEEE Transactions
on Software Engineering 30(2), 126

[Mohan et al.2004] Mohan, A., Gold, N., and Layzell, P. (2004) , In 11th
Working Conference on Reverse Engineering (WCRE 2004), Delft, Nether-
lands: IEEE CS

[Murphy-Hill et al.2009] Murphy-Hill, E., Parnin, C., and Black, A. P. (2009)
, In Proceedings of the 31st International Conference on Software Engi-
neering (ICSE ’ 09), pp. 287–297, Washington, DC, USA: IEEE Computer
Society

14

[Murphy-Hill and Black2008] Murphy-Hill, E. R. and Black, A. P. (2008) , In
Proceedings of the 30th International Conference on Software Engineering
(ICSE’08), pp. 421–430

[Opdyke1992] Opdyke, W. F. (1992) , Ph.D. thesis, University of Illinois at
Urbana-Champaign

[Rech and Ras2004] Rech, J. and Ras, E. (2004) , In The First International
Workshop on Software Quality (SOQUA 2004). (S. Beydeda, V. Gruhn, J.
Mayer, R. Reussner, and F. Schweiggert eds.), Vol. 58 of LNI, GI

[Tullsen2002] Tullsen, M. A. (2002) , Ph.D. thesis, Yale University

[Verbaere2008] Verbaere, M. (2008) , Ph.D. thesis, Wolfson College, Oxford
University

[Villavicencio2012] Villavicencio, G. (2012) , In 16th European Conference
on Software Maintenance and Reengineering (CSMR 2012), Zseged, Hun-
gary: IEEE

[von Mayrhauser and Vans1995] von Mayrhauser, A. and Vans, A. M. (1995)
, IEEE Computer 28(8), 44

15

	Introduction
	Background
	A refactoring can improve a quality aspect while damaging other/s
	The question 'what am I refactoring for' leads to a scheduling of refactoring
	The knowledge of refactoring must be saved to be reused

	Comprehension by Refactoring
	An Example
	Forward Refactoring is not Undoing a Reverse Refactoring

	Further Directions
	Conclusions

