
Universidad Católica de
Santiago del Estero
Facultad de Matemática Aplicada

Technical Report TR-1013

Technical Report

Gustavo Villavicencio

Campus de la UCSE
gustavov@ucse.edu.ar

1

Abstract

Current software maintenance is performed on the running version
of the system. However, such version is not always the most suitable for
supporting a specific maintenance request. So, successive maintenance
applied on an inadequate version gradually diminishes the system. In
this paper we sustain that alternative versions of the system can be gen-
erated by a systematic refactoring, so that the most suitable is selected
for supporting a maintenance request. After maintenance, the intro-
duced modifications are propagated back to the running version. In this
maintenance scenario, the main challenge is how to keep the synchro-
nization between the version selected for maintenance and the running
version.

2

1 Introduction

Software maintenance is usually performed on the running system version.
Whenever there is a coming maintenance request, the maintenance machinery
is activated in order to address it. After the modifications, a new running ver-
sion is delivered and then used for future maintenance. Therefore, the same
system version is used for applying every kind of maintenance activities.

Contrarily, other engineering disciplines disassemble their artifacts for
maintenance, i.e. they resort to an entirely different “version” of the system to
perform maintenance. Moreover, the disassembled version selected to carry
out maintenance depends on the maintenance request in hand. In aerospace
engineering, for instance, the disassembling required for maintaining the air-
conditioning system in an aircraft is different from that required for maintain-
ing the video system. That is, different “aircraft versions” are generated by
disassembling according to the maintenance request. Thus, the maintenance
request fixes the artifact version on which to carry out the maintenance. Dif-
ferently, in software engineering only one version, i.e. the running version,
has to undergo all the changes.

Furthermore, the major factor during software maintenance is its compre-
hension [von Mayrhauser and Vans1995]. As only one artifact version (the
running version) has to undergo all the maintenance activities, and because it
is not always the most suitable for receiving a specific maintenance request,
comprehension decreases after the modifications. As a consequence, future
maintenance becomes more difficult. Figure 1 shows that understanding di-
minishes as new artifact versions are generated after successive maintenance
phases.

Comprehension

Versions

Figure 1: Traditional software maintenance process.

To improve this situation we propose to calculate, by refactoring [Opdyke1992],

3

alternative artifact versions after each maintenance phase. Thus, when a new
maintenance request arrives, the most suitable from those alternative versions
is selected. Then, the changes made are propagated back from the version
where they were introduced to the running version by reversing the original
sequence of refactorings. This scenario is depicted in figure 2.

Running
version

Maintenance
versions

Refactorings

Reversed refactorings

Figure 2: Synchronization between artifact versions.

However, the changes introduced must not violate the conditions that guar-
antee that, by reversing the original sequence of refactorings, these changes be
propagated back to the original version. From a graphical perspective, this in-
volves introducing a new axis in figure 1, i.e. that with the sequence of the
alternative artifact versions. Therefore, in this scenario the main problem to
solve is how to keep the synchronization between the version that receives the
modification and the running version.

Some of these ideas have been presented in [Villavicencio2012]. In this
paper, we provide an entirely different approach for improving the understand-
ing of this strategy, and the challenges we are faced with. This document is
organized as follows: An introductory example is developed in section 2 to
show the main ideas. The new perspective on software maintenance is pre-
sented in section 3 and the conclusions in section 4.

2 A Motivating Example

Consider the Haskell program [Bird1998] in figure 3 counts the characters,
lines and words from an input string. Suppose that this code is currently run-
ning and we want to change the mechanism for detecting words. The actual
mechanism recognizes a word as a string composed by non-white symbols
ended in a white symbol (space, tab, or newline). The new word-detection
mechanism recognizes a word as made up of alphabetical characters ending in
a white space. This example has also been used in [Gallagher and Lyle1991]
for other purposes.

Assume also, that from this running code we calculate a sequence of new
artifact versions by refactoring. By applying slicing or splitting refactoring
[Brown and Thompson2007] we obtain a first of such versions shown in fig-
ure 4. Although slicing allows focusing attention on specific code areas by

4

counts l = loops l (0,0,0,False)

loops [] (c,w,l,b) = (c,w,l,b)
loops (h:t) (c,w,l,b) | blanks h = loops t (c+1,w,l,False)
loops (h:t) (c,w,l,b) | h==’\n’ = loops t (c+1,w,l+1,False)
loops (h:t) (c,w,l,True) = loops t (c+1,w,l,True)
loops (h:t) (c,w,l,False) = loops t (c+1,w+1,l,True)

blanks c = (c==’ ’) || (c==’\t’)

Figure 3: The running Haskell code.

countCC l = loopcc l 0

loopcc [] c = c
loopcc (x:xs) c = loopcc xs (c+1)

(a) Slice on c.

countW l = fst (loopw l (0,False))

loopw [] (w,b) = (w,b)
loopw (h:t) (w,b)
| blankw h = loopw t (w,False)
loopw (h:t) (w,True)
= loopw t (w,True)
loopw (h:t) (w,False)
= loopw t (w+1,True)

blankw c = c==’\ n’ || (c==’ ’) || (c==’\ t’)

(b) Slice on w.

countL l = loopl l 0

loopl [] l = l
loopl (h:t) l | h==’\n’ = loopl t (l+1)
loopl (_:t) l = loopl t l

(c) Slice on l.

Figure 4: Slices generated from the running code.

5

reducing the volume of lines to analyze, further improvements on the condi-
tions for maintenance (including comprehension) can be gained arranging the
code so as to facilitate the introduction of modifications. Thus, in this exam-
ple, according to the maintenance request in hand, the slice on w is of interest,
but a most suitable code version can be obtained. Therefore, we continue the
transformation process on the slice on w by performing the next sequence of
refactoring: replace explicit recursion by operator, remove accumulation pa-
rameter, and finally splitting refactoring again. The results of this process are
shown in figure 5.

In this way, different artifact versions that improve the conditions for com-
prehension have been obtained, and so the programmer can focus the attention
on the one that better fits his programming style [Mohan et al.2004]. Further
insights can also be gathered by using on these versions the automatic tools
already developed for comprehension.

Regarding the maintenance request, we note that there are two main mod-
ifications to introduce: remove the boolean variable since it will not be nec-
essary anymore, and change the conditions for detecting words which require
not only verify the actual character in the input but also the upcoming. Ac-
cording to this, we consider that the slice version in figure 5c is the most
appropriate for introducing such modifications. From there, we remove the
second element of the output tuple of the loopws6 function, and we change
the guard in function auxCount. This sequence of modification is shown in
figure 6. Unfortunately, a mapping between a plan for maintenance and a set
of code arrangements, as described before, is a process based on knowledge
and experience and would not be easily automatized.

After the modifications, we want to reconstruct the original program by
reversing the process performed until now. Thus, we noted that after the mod-
ifications one function operating in mutual recursion had disappeared and the
code arrangement returned to the configuration in figure 5b. It means that the
reversing process has to start at this point. Therefore, we perform introduc-
tion accumulator parameter refactoring and then, we also reverse the previous
refactoring performed at the beginning, i.e. we perform introduction of explict
recursion refactoring.

Reversing the original sequence of refactorings after the modifications is
feasible since the modifications have not affected the preconditions related to
the refactorings. Another aspect to take into account is that such inversion does
not imply that the reversed refactoring sequence is obtained by undoing the
original sequence. Clearly, it is because the introduced modifications preclude
such alternative.

So, at this point we have recovered the updated slice on w. The last step in

6

countWs3 l = loopWs3 l (0,False)

loopWs3 [] (cw,_) = cw
loopWs3 (h:t) (cw,bool) = loopWs3 t (isWord
(cw,bool) h)

isWord (w,b) h | blankWs h = (w,False)
isWord (w,True) h = (w,True)
isWord (w,False) h = (w+1,True)

countWs4 l = fst $ foldl isWord (0,False) l

(a) Replacing explicit recursion by operator.

countWs5 l = fst $ loopWs5 $ reverse l

loopWs5 [] = (0,False)
loopWs5 (h:t) = isWord (loopWs5 t) h

(b) Removing accumulator parameter from loopWs3.

countWs6 l = fst $ loopWs6 $ reverse l

loopWs6 [] = (0,False)
loopWs6 (h:t) = (auxCount (loopWs6 t) h,

auxBool (loopWs6 t) h)

auxCount (c,b) h | (blankWs2 h || b==True) = c
auxCount (c,b) h
= c+1

auxBool (_,_) h | blankWs2 h = False
auxBool (_,_) h = True

(c) Splitting isWord function and arranging the parameters ac-
cordingly.

Figure 5: Versions of the slice on w generated by a sequence of refactorings.

7

loopWs6 [] = 0
loopWs6 (h:t) = auxCount (loopWs6 t) h

auxCount c h | blankWs2 h = c
auxCount c h = c+1

(a) The calculations related with the boolean variable are re-
moved from the version in 5c .

loopWs6 [] = 0
loopws6 (h:[]) = 1
loopWs6 (h1:h2:t) = auxCount (loopWs6 (h2:t)) h1 h2

auxCount c h1 h2 | isSpace(h1) && isAlpha(h2) = c+1
auxCount c _ _
= c

(b) The condition of the detecting-word mechanism is changed
from 6a.

Figure 6: Sequence of changes on the slice in figure 5c.

the reversing process is merging this slice with the other two: slice on c and on
l. The result is shown in figure 7. The result of merging refactoring is far from
being obtained by a tool like HaRe [Huiqing Li2008]. However an equivalent
result can be obtained thus if we further refactor the slice in figure 7b before
merging, in order to unify the pattern sets by moving the pattern conditions to
the right hand sides.

In this way we have restored the original and monolithical program after
updating a refactored version on the slice on w. We hold the idea that human
intervention should be limited to the two-step modifications shown in figure 6;
and that the transformation process for getting the final slice version in figure
5c as well as the opposite process for propagating the changes back to the
running version can be automatized.

3 A Three-Dimensional View on Software Maintenance

According to the previous example, a new perspective on maintenance arises
where a new axis is incorporated to the traditional perspective shown in figure
1, i.e. sequences of semantically equivalent versions of an artifact. Figure 8
shows this new multidimensional space where the planes are the successive
maintenances phases, the circles represent artifact versions, and the upward
and downward arrows are opposite refactorings.

8

loopWs7 [] w = w
loopWs7 (h:[]) w = w+1
loopWs7 (h1:h2:t) w = loopWs7 (h2:t) (auxCount w h1 h2)

(a) Introducing accumulator parameter in updated slice.

loopWs9 []
w = w
loopWs9 (h:[])
w = w+1
loopWs9 (h3:h4:t) w | isSpace(h3) && isAlpha(h4)

= loopWs9 (h4:t) (w+1)
loopWs9 (h3:h4:t) w = loopWs9 (h4:t) w

(b) Introducing explicit recursion in 7a.

loop [] (c,l,w) = (c,l,w)
loop (h:[]) (c,l,w)
= (c+1,l,w+1)
loop (h:t) (c,l,w) | h==’\n’

= loop t (c+1,l+1,w)
loop (h3:h4:t) (c,l,w) | isSpace(h3) && isAlpha(h4)

= loop (h4:t) (c+1,l,w+1)
loop (h3:h4:t) (c,l,w)
= loop (h4:t) (c+1,l,w)

(c) Merging the slices in figures 7b, 4a, and 4c.

Figure 7: The reversing process after updating slice on w.

9

Understanding

Sequence

Vers
ion

¶

·

¸

¹ º »

. . .

Figure 8: A three-dimensional view of the maintenance process.

10

The first version of the system is the “seed” which, we assume, is mono-
lithic and efficient (the filled bottom circle on the first plane, figure 3 in the
example). From here, an initial sequence of semantically equivalent versions
is generated by refactorings (the upward arrows, figures 4 and 5 in the exam-
ple). Whenever there is an incoming maintenance request the most suitable
version is selected (the dotted circle on the first plane, figure 5c in the exam-
ple) to apply the modifications. After the modifications (figure 6), the changes
are propagated back to the running version by reversing the previous sequence
of refactorings (the downward arrows, figure 7 in the example), and thus, a
new “seed” is generated (the filled bottom circle in the second plane, figure
7c). Clearly, the consistency of the artifact versions above the one taken for
performing the maintenance must also be checked. It paves the way for a
future maintenance (including comprehension) phase.

3.1 Sequence of refactorings

By a sequence of refactorings we mean a sequence of behavior-preserving
transformations where each transformation step generates a new meaningful
arrangement to the user. “Meaningful arrangement”, in turn, means that a
refactored version provides additional insight (functional or structural) to that
provided by the previous one. It is different from the composite refactorings
[Opdyke1992] since these are composed of primitive refactorings. If we con-
sider this last concept, we must say that we are interested in sequences of
composite refactorings.

At the same time, we require that each transformation be meaningful ac-
cording to the two opposite programming properties, i.e. comprehension and
efficiency, the former intrinsically related to the maintenance version (the up-
ward arrows in figure 8) and the latter to the running version (the downward
arrows in figure 8). Refactorings improving comprehension are generally rep-
resented by transformations that decompose the artifact, or parts of the artifact,
in smaller pieces. Another alternative for improving comprehension would be
that the code arrangement fits in a design pattern previously defined (foldl
in figure 5a, for instance). Thus, two are the criteria for selecting this kind
of refactorings and/or sequence of refactorings: decomposition and abstrac-
tion (such concepts are closely related to the concepts of chunk and beacon
respectively, well-known in the program comprehension area). On the con-
trary, efficiency-oriented refactorings improve efficiency usually by assem-
bling fragments into more monolithic and complex ones, or removing the use
of auxiliary structures taken from some library.

According to the aforementioned criteria, two are the benefits for consider-

11

ing alternative artifact versions generated by a systematic refactoring: 1) The
conditions for comprehension are improved and, 2) the programmer can select
the most amenable version for applying the maintenance request.

On the other hand, an analysis of sequential dependencies has to be car-
ried out to schedule the appropriate order in which refactorings must be ap-
plied. This order is relevant since the application of a specific refactoring
could preclude the application of others. Besides, there are sequences of refac-
torings that can be atomically executed and so must be regrouped together. As
a result, a careful schedule of refactoring must be required [Liu et al.2007,
Liu et al.2008]. To be effective, such schedule must be program independent
[Kniesel and Koch2004].

3.2 The Update Problem

On the other hand, to avoid undoing refactorings, the application of a refa-
toring sequence must be preceded by the verification of the related condition.
Such condition is the composition of the preconditions of refactorings that
makes up the sequence. That is,

c1, c2, ..., cn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Join precondition

↝ r1, r2, ..., rn (1)

where ci is the precondition related to the refactoring ri. Similarly, to denote
the reversing sequence we will have c

′

n, c
′

n−1, ..., c
′

1 ↝ r−1n , r−1n−1, ..., r
−1
1 .

In order to propagate the changes back to the original artifact version, they
should not have added, deleted, or modified any program elements that influ-
ence the truth of c

′

n. However, this constraint can be relaxed and allow the
restoration of the artifact by means of the rest of the refactoring sequence that
remains executable. In the example, for instance, we have four preconditions
and, after maintenance, the first in the reversed sequence becomes false since
the inWord function can not be reconstructed by the related inverse. That is

�
�S
Sc
′

4, c
′

3, c
′

2, c
′

1 ↝ �
�@
@

r−14 , r−13 , r−12 , r−11 . However, the remaining active refactoring
subsequence can still restore the original artifact version with the modifica-
tions. In general, the modifications can break the joint precondition at any
point even at the beginning, which will preclude the application of any refac-
toring from the reversed sequence. In that case, we must define (after main-
tenance) an entirely new refactoring sequence (as defined by equation 1) that
will be used in subsequent maintenance (including comprehension) phases.

12

4 Conclusion

The present software maintenance scenario is based on one artifact version
that must accept all kinds of changes. On the contrary, this paper proposes
multiple artifact versions for supporting the maintenance activities (includ-
ing comprehension). This approach, as shown in the example, encourages an
inside-out maintenance style (similar to other engineering disciplines) where
the programmer focuses the attention on the fragments requiring human inter-
vention, and the rest of changes can be propagated back automatically.

References

[Bird1998] Bird, R. (1998) , Introduction to Functional Programming , Se-
ries in Computer Science, Prentice-Hall International, 2nd edition

[Brown and Thompson2007] Brown, C. and Thompson, S. (2007) , In Draft
Proceedings of the 19th International Symposium on Implementation and
Application of Functional Languages (IFL 2007)

[Gallagher and Lyle1991] Gallagher, K. B. and Lyle, J. R. (1991) , IEEE
Transactions on Software Engineering 17(8), 751

[Huiqing Li2008] Huiqing Li, Claus Reinke, S. T. (2008) , The Haskell Refac-
torer

[Kniesel and Koch2004] Kniesel, G. and Koch, H. (2004) , Sci. Comput. Pro-
gram. 52(1-3), 9

[Liu et al.2008] Liu, H., Li, G., Ma, Y., and Z., S. W. (2008) , IET Software
2(5)

[Liu et al.2007] Liu, H., Li, G., Ma, Z., and Shao, W. (2007) , In Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, ASE ’07, pp. 489–492, New York, NY, USA: ACM

[Mohan et al.2004] Mohan, A., Gold, N., and Layzell, P. (2004) , In 11th
Working Conference on Reverse Engineering (WCRE 2004), Delft, Nether-
lands: IEEE CS

[Opdyke1992] Opdyke, W. F. (1992) , Ph.D. thesis, University of Illinois at
Urbana-Champaign

13

http://www.prenhall.com/ptrbooks/ptr_0134843460.html

[Villavicencio2012] Villavicencio, G. (2012) , In 16th European Conference
on Software Maintenance and Reengineering (CSMR 2012), Zseged, Hun-
gary: IEEE

[von Mayrhauser and Vans1995] von Mayrhauser, A. and Vans, A. M. (1995)
, IEEE Computer 28(8), 44

14

	Introduction
	A Motivating Example
	A Three-Dimensional View on Software Maintenance
	Sequence of refactorings
	The Update Problem

	Conclusion

