
Universidad Católica de
Santiago del Estero
Facultad de Matemática Aplicada

Technical Report TR-504

Monadic Refactoring by
Reverse Program Calculation

Gustavo Villavicencio

Campus de la UCSE
Santiago del Estero, Argentina

gustavov@ucse.edu.ar

1

Abstract

In the context of a program analysis approach based on reverse pro-
gram calculation (RPC) we start from HASKELL or VDM-SL descrip-
tions of the denotational semantics of imperative programs. The need
to treat side effects requires more sophistication than that of pure func-
tional denotations. We follow the common practice in the HASKELL
community of using the algebraic concept of a monad in treating side
effects, thus preserving referential transparency and equational reason-
ing, which are central to our formal RPC approach.

In this paper we show how to proceed in the presence of side effects
affecting recursive computations. We show that other kinds of trans-
formation are required for such functional expressions to be formally
treatable. In this context, new algebraic laws are applied to obtain com-
pact point-free expressions.

2

1 Introduction

In previous work [Oliveira and Villavicencio2001] we have used HASKELL
as support for the denotational semantics of programs written in imperative
style (i.e. C language). In HASKELL, as in ordinary mathematics, the output
of the functions are solely determined by their input values. Unfortunately,
this imposes severe limitations in modelling program with side effects.

So, for example, the concept of change of state used to explain how a pro-
gram is executed is not functional. A program in state ti mapping a variable x
to the value vx, can also map x to another value vy in the next state tj . There-
fore, given the same input x, the result returned by some function ‘value of‘ is
not the same.

The IO operations are other kind of computations whose outputs are not
determined solely by their inputs. A function that gets a char from a file will
return a different char the next time it is called since the state of the file has
changed. A solution would be to generate a new (updated) state together with
the output, thus enabling the function to operate subsequently over the new
state (state-passing style).

Another important class of operations include computations which, in-
stead of passing an updated state, will require the passing of an exception, for
example. The form in which they are written is called exception-passing style.

To the previous situations we can add others where the same conditions
are present: nondeterminism, error handling, concurrency,etc. All of these
are known as computational effects [Benton et al.2000]. The functions that
exhibit behavior with computational effects affect the referential transparency
and the equational reasoning which are critical properties of pure functional
languages.

To restore these properties, a natural procedure would seem to be limiting
the scope of computational effects. Monads [Moggi1989, Moggi1991] can
be used for this purpose. Moggi [Filinski1996] was among the first to observe
that effects can be modelled as particular instances of a generic schema, pa-
rameterized by a monad. That is, the theory of computational effects can be
derived in an abstract way without reference to any particular effect.

This perspective provides an abstract and uniform way of modelling fea-
tures in programming languages, thanks to monadic structures that hide the de-
tails on how computational effects are internally represented and composed.

However, it was Wadler [Wadler1990, Wadler1995] who observed that
monads can also be applied to structure functional programs and not only
the underlying semantics. Wadler’s perspective was quickly adopted by the
functional community turning monads into a core device in modern computer

3

programming.
In the case of HASKELL, the use of monads is further encouraged by the

use of the do-notation. Unfortunately, the ease in the application of monadic
concepts, combined with the unawareness programmers have on the formal
underlying theory, affect correct program writing and re-structuring. There is
little doubt that this disturbs program understanding.

Thus, in this paper we are particularly interested in dealing with refactor-
ing monadic structures, with the aim of putting some order into the underlying
denotational semantics that allows to carry on the process of inverse calcu-
lus [Oliveira and Villavicencio2001, Villavicencio2003]. The idea is to apply
monadic refactoring techniques until we obtain expressions which are treat-
able with some law available from a calculus.

We recall from [Oliveira and Villavicencio2001] that, after translating the
denotational semantics into HASKELL, a series of transformations are per-
formed to pave the way for the application of algebraic laws. After that, the
calculation process continues on the “algebraic side”, until sufficiently abstract
formulae are calculated. So, precise and compact program specifications are
obtained by mathematical means. Usually, the specifications calculated are
expressed in point-free style [Cunha and Pinto2004, Oliveira1999].

Although in [Villavicencio2003] we have used VDM-SLas semantic sup-
port, we could have used HASKELL too, and vice-versa. Regardless of which
support is used, our emphasis is put on semantic transformation. Its complex-
ity arises not only from the intrinsic algorithmic context but also from other
factors such as side effects.

Specifically, and because it is one of the most interesting situations, we fo-
cus on handling computational effects in the presence of recursion. In [Erkök2002],
a new way to handle recursion in the presence of computational effects is
proposed, based on the concept of the so called value recursion. In this ap-
proach, the main idea is that the fixpoint be calculated only over the values,
without repeating or losing effects. The introduced value recursion opera-
tor mfix would allow the variables to be recursively linked whenever the
corresponding monad comes equipped with the appropriate fixpoint operator
[Erkök and Launchbury2002].

Therefore, for a term fix x.e where e is an expression whose evaluation
has side effects and fix is some fixed point operator, there are two notions of
monadic recursion [Moggi and Sabry2004]:

1. The usual unfolding semantics, where the term is equivalent to e{x =
fix x.e}, and the side-effects are duplicated by the unfolding.

2. Value recursion, where the term is equivalent to v{x = fix x.v} where

4

v is a value obtained after e is evaluated, and the side-effects are per-
formed only the first time e is evaluated.

In this paper, we will use the usual unfolding semantics approach to model
monadic recursion, not only because it is better known, but also because
the value recursion still has open problems [Moggi and Sabry2004], specially
with monadic continuation passing style (CPS).

In summary, the main target of this paper is to explore the RPC process
in the presence of monadic effects in recursive structures: what kind of trans-
formations are required?, is there a need for new algebraic laws in the rea-
soning?. In order to shorten the path to follow, the slicing techniques used in
[Oliveira and Villavicencio2001, Villavicencio2003] are set aside.

In section 2 we will present the main concepts related to our area of in-
terest, and an easy example will be developed to emphasize the target we are
pursuing. In section 3, we go deeper into the previous concepts in order to
handle more interesting recursive programs. Again, an example is provided.

Finally, sections 4 and 5 present work ahead and the conclusions respec-
tively.

2 Background

Many operators like split(〈, 〉) and either ([,]) used in this paper, have already
been developed in [Oliveira and Villavicencio2001, Villavicencio2003] and in
more detail in [Oliveira1999]. The properties related to these operators, can
also be found in the previous references. Therefore, in this paper we will
only introduce the additional algebraic theory demanded by the new context
application of our approach; i.e. the presence of side effects.

2.1 Monads

A monad over a category C is a triple (M,η, µ) where M : C −→ C is an
endofunctor and two natural transformations: η : idC −→M and µ :M2 −→
M which obey two laws:

µ · (η ·M) ≡ 1F ≡ µ · (M · η) (1)

µ · (µ ·M) ≡ µ · (M · µ) (2)

the former is called the left and right unit of a monad where 1F 1 is the identity
1F is a category where the objects are functors and the morphisms are natural transforma-

tions.

5

in F , and the latter the associative law of a monad.
In [Moggi1989] the main idea is to distinguish functions whose returned

values are solely determined by their input values from those that can produce
more results than the result explicitly returned. These last are called computa-
tional effects.

Some notions of computational effects in the category of sets are [Moggi1991,
Benton et al.2000]:

• Partiality: M A = A⊥, where ⊥ is the diverging computation

• Exception M A = A+ E, where E is the set of exceptions

• Continuations M A = RR
A

, where R is the set of results

Since the concept of monad can be defined in various ways, we adopt
a suitable one for our purposes, the so-called Kleisli triple. A Kleisli triple
(M,unit, ∗) over a category C is given by the endofunctor M restricted only
to objects, a natural transformation unit : idC →M , and an extension opera-
tor ∗ which takes a morphism f : A −→M B and “lifts” its domain to M A,
i.e. f∗ :M A −→M B, such that the next properties hold

unit∗A = idM A (3)

f∗ · unitA = f (4)

f∗ · g∗ = (f∗ · g)∗ (5)

In this context, objects of typeM Amodel computations delivering values
of type A. Thus, unitA is an operation that turns a value into the computa-
tions which return that value and does nothing else [Wadler1995]. On the other
hand, the extension operator provides a mechanism to compose monadic func-
tions. The Kleisli composition of two monadic functions f : A −→M B and
g : B −→M C is defined as

g • f = g∗ · f (6)

Under the light of this definition, the Kleisli triple laws are interpreted as
follows: the first two laws mean that unit is a right and left identity with re-
spect to Kleisli composition, whereas the last one expresses that composition
is associative. Therefore, monadic morphism forms a category [Pardo2001].

So, we can define the Kleisli category CM for each Kleisli triple (M,unit, ∗)
as follows: the objects in CM are the same as in C, morphisms from A to
B in CM are related to arrows A −→ M B in C, identity is defined by

6

unitA : A −→ M A, and finally, the composition by the Kleisli composi-
tion.

In order to translate objects and morphisms from C to CM we can define a
lifting functor (−̂) : C −→ CM . For objects, this functor is the identity functor
and for morphisms f : A −→ B, defined as f̂ = initB · f . Moreover, we
can define the converse of (−̂), R : CM −→ C. On objects, it is defined as
RA =MA, and on morphisms asRf = f∗ where f : A −→MB.

Both previous definitions are equivalent, and we can construct each one
from the other. So, from the Kleisli triple components the action M on f :
A −→ B is defined byMf = (unitB ·f)∗, and µA = id∗MA. Besides, we can
construct a Kleisli triple from a monad (M,unit, µ), restricting M to objects,
and defining the extension of each f : A −→MB as f∗ = µB ·Mf .

2.2 An example

Supposing that we interested in dividing two numbers, and we want to avoid
the operation of printing an error message, when the divisor is zero. A monadic
version of a program that does this is shown in figure 1 where Me A is iso-
morphic to A + String, which is an instance of M A = A + E, the already
mentioned monad Exception.

type Mess = String
data Me a = Res a | Exc Mess

divide :: Int -> Int -> Exc Int
divide x y =

if y==0
then Exc "division by zero"
else Res (x ‘div‘ y)

eval :: Show a => Me a -> [Char]
eval (Exc c) = c
eval (Res a) = show a

Figure 1: Division function in HASKELL

Therefore, we can introduce the next definitions for this particular monad

7

unit = i1 (7)

µ = [id, i2] (8)

f∗ = µ · (M f)

= [id, i2] · (f + id)

= [f, i2] (9)

x >>= f = f∗x (10)

and proceed to prove (3), (4) and (5) as follows:

• Right unit: Proving (3)

unit∗

= { definition}

i∗1

= { definition}

[i1, i2]

= { +-reflexion}

id (11)

• Left unit: Proving (4)

f∗ · unit
= { definitions}

[f, i2] · i1
= { +-cancellation}

f (12)

• Associativity: Proving (5)

8

f∗ · g∗

= { g∗ definition}

f∗ · [g, i2]

= { +-fusion}

[f∗ · g, f∗ · i2]

= { f∗ definition}

[f∗ · g, [f, i2] · i2]

= { +-cancellation}

[f∗ · g, i2]

= { ∗ definition}

(f∗ · g)∗ (13)

Returning to our example, and applying pattern matching on the divide
function we can rewrite it as

divide :: Int→ Int→Me Int
divide x 0 = Exc ”no divide”
divide x y = Res (x ‘div‘ y)

(14)

Note that this function can also be written as an uncurried function: A×A −→
Exc A. In point-free notation this function can be modelled as

udivide

=

[i1 · (uncurried(/)) · 〈π1, π2〉, i2 · const“no divide′′] · ((= 0) · π2)?(15)

Because 〈π1, π2〉 = id, and applying + − absorption in reverse order, we
obtain

udivide = [i1, i2] · (uncurried(/)+ const“no divide′′) · ((= 0) ·π2)? (16)

At this point, we can use McCarthy’s conditional to rewrite the equation

udivide = (= 0) · π2 −→ [i1, i2] · ((uncurried(/)) + const“no divide′′)
(17)

9

Suppose now that we have a lifting operator ∗ such that for each f :
A −→M B (whereM is a datatype likeMe) yields f∗ :M A −→M B. By
uncurrying the divide function and by means of the lifting operator we have

udivide∗ : A×A+ E −→M A

Therefore, we could write the udivide∗ function in point-free style as follows

udivide∗ = [((= 0)·π2 −→ [i1, i2]·((uncurried(/))+const“no divide′′)), i2]
(18)

In order to see how (4) is fulfilled, we write

udivide∗ · i1 = udivide (19)

(recall (12)) where udivide is defined in (17).
With regard to (3), it is easy to see that i1 : a −→ Me a, therefore

i∗1 :Me a −→Me a, and in consequence i∗1 = idMe (recall (11)).
Suppose now that we have a function which computes the nth even num-

ber, as is shown in figure 2. Thus, we can compose udivide and dupE as
follows

dupE :: Int -> Me Int
dupE n = return (2*n)

Figure 2: Even number function

multdiv :: Int× Int→Me Int
multdiv(x, y) = udivide(x, y) >>= \r− > dupEr

(20)

where two important operators arise

return :: a→Me a

>>= :: Me a→ (a→Me b)→Me b

While the first takes a value and generates a computation, the second com-
poses computations. By means of (6), we could rewrite (20) as

multdiv = dupE • udivide = dupE∗ · udivide

which is the standard Kleisli composition definition (6). So, regarding (5), it
is easy to observe that the next equation is valid

10

dupE∗ · udivide∗ = (dupE∗ · udivide)∗ (21)

(recall (13)).
Therefore, the triple (Me, i1,

∗) is a Kleisli triple, and so a monad, where
Me is an endofunctor and i1 and ∗ are natural transformations. In order
to make this triple work like a monad, the definition in figure 3 is required in
HASKELL where the endofunctorMe is defined as an instance of the Monad
Class, as long as the monadic operators return and >>= are adapted to Me.

instance Monad Me where
exc >>= f = case exc of

Res a -> f a
Exc e -> Exc e

return a = Res a

Figure 3: Monad class instantiation

Altogether, we have identified all the formal (monadic) components to
have a formal description of the program. All this information can be put
together in a single triple

(Me, i1, [udivide, i2]) (22)

which is the Kleisli triple that handles exceptions in our program example.

3 Monadic catas

Our example in section 2.2 is not recursive. In order to handle more interesting
recursive programs, more advanced monadic concepts are needed.

3.1 Further concepts

A monadM on a category C with product is called strong if it comes equipped
with a natural transformation

τA,B : A×MB −→M(A×B)

τ(a,m) = do{x← m; return(a, x)} (23)

11

(do notation is a syntactic sugar used in HASKELL to use monads easier)
i.e. τA,B transforms a pair value-computation into a computation of a pair
of values [Moggi1991]. This natural transformation is called strength and
satisfies the following equations [Pardo2001]

Mπ2 · τ1,A = π2 (24)

τA,B×C · (idA × τB,C) · αA,B,C = MαA,B,C · τA×B,C (25)

where π2 is a projection and α is a natural isomorphism [Simpson et al.2003].
Based on the strong functor concept, we can define a strong monad [Moggi1991].

Another important concept whose usefulness will become clear in the fol-
lowing sections is that of monadic extension of functor F in a category C. It is
a construction of type F̂ : CM −→ CM such that F̂A = FA, i.e. the objects in
C and CM are the same; and on monadic morphisms f : A −→MB, it yields
F̂ f : F̂A −→M(F̂B), or what is the same F̂ f : FA −→M(FB) in CM .

Closely related to the monadic extension concept is the so called distri-
bution law [Fokkinga1994]. It determines that every monadic extension F̂ is
related one-to-one to a natural transformation δF : FM ⇒MF . This natural
transformation performs the distribution of a monad over a functor. Pictori-
cally

F̂ f = FA
Ff // FMB

δFB //MFB (26)

For instance, we can define the distribution law for the sum operator

δ(A,B) : M A+M B −→M(A+B)
δ+(A,B) = [Mi1,Mi2]

(27)

From here, we can derive a monadic extension to the sum functor. Given f+g
and composing with (27), we get

= [Mi1,Mi2] · (f + g)

+− absortion law
f+̂g = [Mi1 · f,Mi2 · g] (28)

So, f+̂g denotes the monadic extension of the + functor.

12

3.2 Catas and homos

From a simple view, a monadic fold is a function that behaves like a fold,
but with the added property of producing effects. As approximation to its
definition we consider the next diagram in the Kleisli category CM

M A

f∗

��

F A
hoo

F̂ f
��

M B M F B
h′∗

oo

(29)

In this view, we are thinking of functions that involve a recursive process dur-
ing which side effects can be produced. From (29) we can infer property

f • h = h′ • F̂ f (30)

where h : FA → MA and h′ : FB → MB are monadic algebras and
f : A→MB a homomorphism between them.

By definition, and supposing that (M T, înT) is the initial monadic alge-
bra, then there is a unique homomorphism to any monadic algebra (M B, f).
In a diagram

M T

(|f∗|)
��

F T
înToo

F̂ (|f∗|)
��

M B M F B
f∗

oo

(31)

Thus the following property:

h = (|f∗|)⇐⇒ h • înT = f • F̂ h (32)

So, the monadic fold operator [Fokkinga1994], (|f |)MF : T −→ M B is then
defined as the least homomorphism between în and f [Pardo2001]. However,
we know that h • înF = h · inF and F̂ h = δFB · F h, and therefore we can
rewrite (32) as

h · inF = (f • δFB) · F h (33)

which pictorically would be

13

T

(|f |)

��

F T
inoo

F (|f |)
��

F M B

δFB
��

M B M F B
f∗

oo

(34)

In this way, every homomorphism f : T −→ M A between the monadic
algebras înT and f , is also a homomorphism between the normal algebras inF
and f • δFB : F M B −→M B, and vice-versa [Pardo2001].

3.3 An example

The HASKELL code in figure 4 takes a list and subtracts from an element the
previous subtraction calculated from the rest of the list. The process is right to
left. The data type Me has already been introduced in section 2.2, So, Me A
models computations that either succeed and return a value of type A or fail.

Clearly, the most interesting function is the subtList function. As we
know, foldr is a higher order function which encapsulates structural recursion
on lists, as defined in figure 5.

Let us unfold subtList so that it becomes more readable:

subtList [] = Res 0
subtList (x : xs) = subtList xs ‘mcomp‘ \r− >

x ‘subtM ‘ r
(35)

This version requires the mcomp operator defined in figure 6. It is a binding
operator defined for this specific monad.

More examples of this kind of transformation can be found in [Meijer and Jeuring1995].
At this point, it is useful to draw an instance of commutative diagram (34) for
subtList:

14

type Mess = String
data Me a = Res a | Exc Mess

subtM :: Int -> Int -> Me Int
n1 ‘subtM‘ n2 =
if n2>n1

then Exc "Negative value calculated"
else Res (n1-n2)

subtList l =
foldr

(\e1 lr ->
case lr of

Exc e -> Exc e
Res a -> case (el ‘subtM‘ a) of

Exc e -> Exc e
Res a -> Res a)

(Res 0)
l

evalu (Exc e) = e
evalu (Res a) = show a

Figure 4: List subtraction example

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Figure 5: foldr function

m ‘mcomp‘ f =
case m of
Exc e -> Exc e
Res a -> f a

Figure 6: mcomp operator

L

subtList

��

1 + Int× Linoo

id+id×subtList
��

1 + Int×M Int

δ
LA
Int
��

M Int M(1 + Int× Int)
[Res,subtM]∗
oo

(36)

15

However, we still haven’t defined the distribution law for the list base functor,
which will be of type 1+A×ML −→M(1+A×L). Via (23), we proceed
as follows

[Mi1,Mi2] · (id+ τ(A,L))

= { action of monad M in CM}

[(unit · i1)∗, (unit · i2)∗] · (id+ τA,L)

= { either of monadic function}

[unit · i1, unit · i2]∗ · (id+ τA,L)

= { Kleisli composition definition (6)}

[unit · i1, unit · i2] • (id+ τA,L)

= { lifting functor on injections}

[î1, î2] • (id+ τA,L)

= { +-absortion}

[î1, î2 • τA,L] (37)

Now, we are in condition to resume the exercise and infer the next property
from (36)

16

subtList · in
= { from (36)}

[Res, subtM] • (δLA
Int · (id+ id× subtList))

= { list distribution law definition (37)}

[Res, subtM] • ([î1, î2 • τInt,L] · (id+ id× subtList))

= { monadic extension of +-functor (28) and associativity}

([Res, subtM] • (id+̂τInt,L)) · (id+ id× subtList)

= { Kleisli definition (6)}

([Res, subtM]∗ · (id+̂τInt,L)) · (id+ id× subtList)

= { monadic +-absortion}

[Res, subtM · τInt,L] · (id+ id× subtList)

= { +-absortion}

[Res, subtM · τInt,L · (id× subtList)]

Structural equality enables us to rewrite this expression as

subtList ·Nil = Res
subtList · cons = subtM · τInt,l · (id× subtList)

(38)

which is the point-free version of the subtList function. Therefore, equation
(38) is the formal especification (in point-free style) calculated to the subtList
function from figure 4. Of course, the pointwise version [de Moor and Gibbons2000]
can be rebuilt from this via (23), expressed in lambda notation [Barendregt1984,
Barendregt1997] as follows

subtList Nil = Res 0
subtList(cons(a, l)) = subtList(l) ∗ λx.subtM(a, x)

In HASKELL this amounts to the single line program shown in figure 7 where
mfold function is defined as shown in figure 8.

Therefore, figure 7 is the refactoring result produced as consequence of
the previous reverse calculation process performed. So, we have executed a
refactoring process supported by reverse calculation.

It is important to emphasize the results from equation (38) and figure 7,

17

subtList l = mfold subtM (Res 0) l

Figure 7: subtList function applying mfold

mfold :: (Monad a) => (b -> c -> a c) ->
a c -> [b] -> a c

mfold f k [] = k
mfold f k (x:xs) = do {b <- mfold f k xs;

f x b}

Figure 8: mfold function

since they are the main results (for the current example) of the process which
is described in this paper.

4 Future and related work

The reader may have noticed that one of the most critical phases of the process
illustrated above is the transformation step. As we have already pointed out,
the main goal of the transformation process is to find a “bridge” heading to
the point-free side. However, up to now, we do not have a precise view on
how it must be performed. In other words, we do not have a standard set of
(monadic) transformation rules applicable to pointwise expressions. Clearly,
the purpose is to find generalized transformation schemes to make this process
a mechanic one.

In [Erwig and Ren2004] a monadification process is presented to make
monadic, functions that were not so previously. To attain this target, three
kinds of operations are defined: navigating, binding and wrapping. They in-
volve a class of monadic refactoring like the one we are interested in. How-
ever, it is insufficient for our purposes since it simply introduces effects in
pure functions, but not necessarily helps to discover which formal operators,
properties or laws stand behind them.

In order to go further in the process we are interested in, we must study
more complex examples, namely where more that one monad is involved
[Jones and Duponcheel1993]. There are functions that require more than one
computational effect to model their behavior. The usual process to obtain
a monad with several effects is to take a base monad and “enrich” it with
more properties. The new generated monad is called a monad transformer
[Liang et al.1995].

18

On the other hand, there are monadic properties and laws that have not
been used in this paper, in which we have only used laws and properties rele-
vant to the examples developed. In particular, we have applied new monadic
properties related to the either and sum operators. It remains to be seen what
monadic laws are related to the rest of the known operators, and what their
role in our current approach is.

Our attention in this paper has been focused on the well known monad
exception. The same analysis remains to be done on the other monads that are
important for modelling the semantics of imperative programs, namely non-
determinism, interactive input and output, etc.

As pointed out in section 1, slicing techniques have been left aside to avoid
additional difficulties. So, after getting a clear view on how to operate on
monadic functions, we must retake the approach described in [Oliveira and Villavicencio2001,
Villavicencio2003] and put slicing techniques back into the game.

5 Conclusions

In this paper we have developed some examples of program analysis by re-
verse specification in the presence of effects described monadically with the
purpose of algebraically deriving abstract (point-free) descriptions of the orig-
inal code. New laws and properties have been added to the repertoire of
[Oliveira and Villavicencio2001, Villavicencio2003].

We have shown that the presence of side effects entails an important en-
richment in our approach: the use of monads to describe and reason about
effects.

However, we have not sufficiently identified generic schemata of monadic
transformations. Therefore, the transformations we have applied are intuitive
in nature. Although there are “cosmetic” transformations that can be auto-
mated, most of them cannot. However, having a clear goal to achieve in a
transformation process is extremely important in selecting which rule to ap-
ply. Thus, we are heading to a semi-automatic refactoring process instead of a
fully automated one. Alternatively, this could be an opportunity for incorpo-
rating refactoring tools in HASKELL code such as eg. HaRe [Li et al.2003]
the monadic transformations required by the RPC process which are not sup-
ported therein.

19

References

[Barendregt1984] Barendregt, H. (1984) , The Lambda Calculus: Its Syntax
and Semantics, North-Holland, revised ed.

[Barendregt1997] Barendregt, H. (1997) , The Lambda Calculus, North-
Holland, 2 edition

[Benton et al.2000] Benton, N., Hughes, J., and Moggi, E. (2000) , In
APPSEM:International Summer School on Applied Semantics, Vol. 2395
of LNCS, Springer-Verlag

[Cunha and Pinto2004] Cunha, A. and Pinto, J. S. (2004) , In 2nd. APPSEM
II Workshop, pp. 178–179

[de Moor and Gibbons2000] de Moor, O. and Gibbons, J. (2000) , In AMAST:
8th International Conference on Algebraic Methodology and Software
Technology, Vol. 1816 of LNCS, pp. 371–390, Springer-Verlag

[Erkök2002] Erkök, L. (2002) , Ph.D. thesis, OGI School of Science and
Engineering, Oregon Health and Science University

[Erkök and Launchbury2002] Erkök, L. and Launchbury, J. (2002) , In
Haskell Workshop 2002

[Erwig and Ren2004] Erwig, M. and Ren, D. (2004) , Science of Computer
Programming 52(1-3), 101

[Filinski1996] Filinski, A. (1996) , Ph.D. thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, USA

[Fokkinga1994] Fokkinga, M. M. (1994) , Monadic Maps and Folds for
Arbitrary Datatypes, Technical Report Memoranda Inf 94-28, Enschede,
Netherlands: University of Twente

[Jones and Duponcheel1993] Jones, M. and Duponcheel, L. (1993) , Com-
posing Monads, Technical Report YALEU/DCS/RR-1004, New Haven,
Connecticut, USA: Dept. of Computer Science, Yale University

[Li et al.2003] Li, H., Reinke, C., and Thompson, S. (2003) , In ACM SIG-
PLAN 2003 Haskell Workshop. (J. Jeuring ed.), pp. 27–38, ACM

[Liang et al.1995] Liang, S., Hudak, P., and Jones, M. (1995) , In 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, CA: ACM Press, New York, 1995

20

[Meijer and Jeuring1995] Meijer, E. and Jeuring, J. (1995) , In Tutorial Text
1st Int. Spring School on Advanced Functional Programming Techniques,
Båstad, Sweden, 24–30 May 1995. (J. Jeuring and E. Meijer eds.), Vol. 925,
pp. 228–266, Berlin: Springer-Verlag

[Moggi1989] Moggi, E. (1989) , In IEEE Symposium on Logic in Computer
Science, pp. 14–23

[Moggi1991] Moggi, E. (1991) , Informations and Computations 93(1), 55

[Moggi and Sabry2004] Moggi, E. and Sabry, A. (2004) , Theoretical Infor-
matics and Applications, To appear

[Oliveira1999] Oliveira, J. (1999) , An Introduction to Point-free Program-
ming, Departamento de Informática, Universidade do Minho. 37p., chapter
of book in preparation

[Oliveira and Villavicencio2001] Oliveira, J. N. and Villavicencio, G. (2001)
, In Proceedings of the 8th Working Conference on Reverse Engineering,
pp. 35–45, IEEE CS Press, California, USA

[Pardo2001] Pardo, A. (2001) , Theoretical Computer Science 260(Issue 1-
2), 165

[Simpson et al.2003] Simpson, A., Bucalo, A., and Führmann, C. (2003) ,
Theoretical Computer Science 294, 31

[Villavicencio2003] Villavicencio, G. (2003) , In Proceedings of the 7th Eu-
ropean Conference on Software Maintenance and Reengineering, pp. 368–
378, IEEE CS Press, California, USA

[Wadler1990] Wadler, P. (1990) , In Conference on Lisp and Functional Pro-
gramming, pp. 61–78

[Wadler1995] Wadler, P. (1995) , In Advanced Functional Programming, No.
925 in LNCS, Springer-Verlag

21

